Тело, брошенное под углом к горизонту, будем рассматривать как материальную точку, совершающую свободный полет в поле тяжести Земли, без учета сопротивления воздуха. Вектор ускорения в таком движении является постоянной величиной:

\[\overline{a}=\overline{g}\left(1\right).\]

Скорость движения такого тела можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(2\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (2) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело, брошенное под углом к горизонту. Это равномерное перемещение с постоянной скоростью ${\overline{v}}_0$ в направлении горизонта и равноускоренного движения с ускорением $\overline{g}$ без начальной скорости в направлении вектора ускорения свободного падения.

Согласно принципу независимости перемещений при одновременном участии тела в этих двух движениях перемещение нашей материальной точки ($\Delta \overline{r}$) равно сумме векторов: ${\overline{v}}_0t$ и $\frac{\overline{g}t^2}{2}$. Если мы поместим начало отсчета в точку нахождения тела в момент начала наблюдения ($=0$), то вектор перемещения за промежуток времени от 0 до $t$ будет совпадать с радиус-вектором $\overline{r}(t)$:

\[\overline{r}\left(t\right)={\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(3\right),\]

где $\overline{g}$ направлен вертикально вниз и равен по величине приблизительно 9,8 $\frac{м}{с^2}.$

Траектория движения тела, брошенное под углом к горизонту

Не смотря на то, что каждое отдельное движение тела происходит по прямой, результирующей траекторией является парабола, лежащая в плоскости в которой находятся векторы ${\overline{v}}_0$ и $\overline{g}$.

Допустим, что тело при $t=0\ c$ было на высоте $h$, его бросили со скоростью ${\overline{v}}_0$, направленной под углом $\alpha $ к горизонту (рис.1).

Начальные условия при рассматриваемом движении точки таковы:

\[при\ t=0\ c\left\{ \begin{array}{c} x_0=0, \\ y_0=h, \\ v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.(4)\]

Кроме этого мы знаем, что для рассматриваемого движения: $a_x=0;;\ a_y=-g.$ Выражения для проекции скорости (2) на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(5\right).\right.\]

Уравнение перемещения при равнопеременном движении ($\overline{a}=\overline{g}$):

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2},\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени. В нашем случае $s_0=h$. Уравнения координат точки, брошенной под углом к горизонту из уравнения для перемещения:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Из систем уравнений (5) и (6) траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенное под углом к горизонту

Время подъема тела, брошенное под углом к горизонту, при рассматриваемом движении легко определить из системы уравнений (5). В точке максимального подъема вектор скорости точки параллелен оси X, значит $v_y=0$, время подъема ($t_p$) равно:

Время, которое тело пребывало в воздухе (время полета($t_{pol}$)) определяют из второго уравнения системы (6), приравнивая координату $y$ к нулю, получают:

Дальность полета и высота подъема

Для того чтобы найти горизонтальную дальность полета тела, брошенное под углом к горизонту, ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (10) следует, что при данной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание: Чему равно время полета тела, которое бросили параллельно Земле с высоты $h_0$? Начальная скорость тела равна ${\overline{v}}_0$.

Решение: Сделаем рисунок.

Основой для решения задачи является уравнение:

\[\overline{r}\left(t\right)={\overline{h}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Проектируя его на оси X и Y получаем:

\[\left\{ \begin{array}{c} x=v_0t, \\ y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

При падении тела на Землю при нашем выборе системы отсчета получаем, что $y=0$, зная это выразим искомое время:

Ответ: $t_{pol}=\sqrt{\frac{2h_0}{g}}$

Пример 2

Задание: Какой является траектория движения тела падающего с высоты $h_0$ в условиях первого примера?

Решение: В первом примере проектируя уравнение $\overline{r}\left(t\right)$ на оси координат, мы получили, что:

\[\left\{ \begin{array}{c} x=v_0t, \\ y=h_0-\frac{gt^2}{2} \end{array} \right..\]

Выразим из первого уравнения время

подставим его во второе уравнение:

Мы получили уравнение параболы. Траекторией движения падающего тела в наших условиях будет ветка параболы. Вершина этой ветки параболы будет находиться в точке бросания.

Ответ: $y=h_0-\frac{g}{2v^2_0}x^2,$ ветвь параболы (рис.3).

Теория

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила – сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения ; проекции ускорения на координатные оси равны а х = 0, а у = -g.

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

,

где – начальная скорость, α – угол бросания.

Координаты тела, следовательно, изменяются так:

При нашем выборе начала координат начальные координаты (рис. 1) Тогда

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета – это значение координаты х в конце полета, т.е. в момент времени, равный t 0 . Подставляя значение (2) в первую формулу (1), получаем:

. (3)

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Рассмотрим движение тела в поле тяжести Земли, сопротивление воздуха учитывать не будем. Пусть начальная скорость брошенного тела направлена под углом к горизонту $\alpha $ (рис.1). Тело брошено с высоты ${y=h}_0$; $x_0=0$.

Тогда в начальный момент времени тело имеет горизонтальную ($v_x$) и вертикальную ($v_y$) составляющие скорости. Проекции скорости на оси координат при $t=0$ равны:

\[\left\{ \begin{array}{c} v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.\left(1\right).\]

Ускорение тела равно ускорению свободного паления и все время направлено вниз:

\[\overline{a}=\overline{g}\left(2\right).\]

Значит, проекция ускорения на ось X равна нулю, а на ось Y равна $a_y=g.$

Так как по оси X составляющая ускорения равна нулю, то скорость движения тела в этом направлении является постоянной величиной и равна проекции начальной скорости на ось X (см.(1)). Движение тела по оси X равномерное.

При ситуации, изображенной на рис.1 тело по оси Y будет двигаться сначала вверх, а затем виз. При этом ускорение движения тела в обоих случаях равно ускорению $\overline{g}.$ На прохождение пути вверх от произвольной высоты ${y=h}_0$ до максимальной высоты подъема ($h$) тело тратит столько же времени, сколько на падение вниз от $h$ до ${y=h}_0$. Следовательно, точки симметричные относительно вершины подъема тела лежат на одинаковой высоте. Получается, что траектория движения тела симметрична относительно точки-вершины подъема - и это парабола.

Скорость движения тела, брошенного под углом к горизонту можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(3\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (3) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело.

Выражения для проекции скорости на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(4\right).\right.\]

Уравнение для перемещения тела при движении в поле тяжести:

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(5\right),\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени.

Проектируя уравнение (5) на оси координат X и Y, получим:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h_0+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Тело, двигаясь вверх, имеет по оси Y сначала равнозамедленное перемещение, после того, как тело достигает вершины, движение по оси Y становится равноускоренным.

Траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенного под углом к горизонту

Время, затрачиваемое телом для того, чтобы достигнуть максимальной высоты подъема получают из системы уравнений (4). . В вершине траектории тело имеет только горизонтальную составляющую, $v_y=0.$ Время подъема ($t_p$) равно:

Общее время движения тела (время полета ($t_{pol}))$находим из второго уравнения системы (6), зная, что при падении тела на Землю $y=0$, имеем:

Дальность полета и высота подъема тела, брошенного под углом к горизонту

Для нахождения горизонтальной дальности полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (9) следует, что при заданной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание. Во сколько раз изменится время полета тела, которое бросили с высоты $h$ в горизонтальном направлении, если скорость бросания тела увеличили в $n$ раз?

Решение. Найдем формулу для вычисления времени полета тела, если его бросили горизонтально (рис.2).

В качестве основы для решения задачи используем выражение для равноускоренного движения тела в поле тяжести:

\[\overline{s}={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Используя рис.2 запишем проекции уравнения (1.1) на оси координат:

\[\left\{ \begin{array}{c} X:x=v_0t;; \\ Y:y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

Во время падения тела на землю $y=0,$ используем этот факт и выразим время полета из второго уравнения системы (1.2), имеем:

Как мы видим, время полета тела не зависит от его начальной скорости, следовательно, при увеличении начальной скорости в $n$ раз время полета тела не изменится.

Ответ. Не изменится.

Пример 2

Задание. Как изменится дальность полета тела в предыдущей задаче, если начальную скорость увеличить в $n$ раз?

Решение. Дальность полета - это расстояние, которое пройдет тело по горизонтальной оси. Это означает, что нам потребуется уравнение:

из системы (1.2) первого примера. Подставив вместо $t,$ время полета, найденное в (1.3), мы получим дальность полета ($s_{pol}$):

Из формулы (2.2) мы видит, что при заданных условиях движения дальность полета прямо пропорциональна скорости бросания тела, следовательно, во сколько раз увеличим начальную скорость, во столько раз увеличится дальность полета тела.

Ответ. Дальность полета тела увеличится в $n$ раз.

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Движение тела, брошенного под углом к горизонту

Рассмотрим движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, расположив тело в момент бросания в начало координат, как это изображено на рисунке 1.

В отсутствии сил сопротивления, движение тела, брошенного под углом к горизонту, можно рассматривать как частный случай криволинейного движения под действием силы тяжести. Применяя 2 - ой закон Ньютона

∑ F i

получаем

mg = ma ,

a = g

Проекции вектора ускорения a на оси ОХ и ОУ равны:

= −g

где g = const - это

ускорение свободного падения,

которого всегда

направлен вертикально вниз,

численное значение g = 9,8м/с2 ;

= −g

т.к. ось ОУ на

рисунке 1 направлена вверх, в случае, когда ось OY направлена вниз, то проекция вектора

2 a на ось ОУ будет положительна (читая условия задач, выбирайте сами направление осей, если это не прописано в условии).

Значения проекций вектора ускорения a на оси ОХ и ОУ дают основание сделать

следующий вывод:

тело, брошенное под углом к горизонту, одновременно участвует в двух движениях - равномерном по горизонтали и равнопеременном по

вертикали.

Скорость тела в таком случае

V = Vx + Vy

Скорость тела в начальный момент времени (в момент бросания тела)

V 0 = V 0 x

V 0 y .

Проекции вектора начальной скорости на оси ОХ и ОУ равны

V cosα

V 0 y

V 0 sin α

Для равнопеременного движения зависимости скорости и перемещения от времени задаются уравнениями:

V 0 + at

S 0 + V 0 t +

и S 0 - это скорость и перемещение тела в начальный момент времени,

и S t - это скорость и перемещение тела в момент времени t.

Проекции векторного уравнения (8) на оси ОХ и ОУ равны

V 0 x

Ax t ,

V ty = V 0 y + a y t

Const

V 0 y - gt

Проекции векторного уравнения (9) на оси ОХ и ОУ равны

S ox + V ox t +

a y t 2

S 0 y

V oy t +

с учетом равенств (4), получаем

S 0 y

V oy t -

gt 2

где Sox и Soy -

координаты тела

в начальный момент времени,

а Stx и Sty -

координаты тела в момент времени t.

За время своего движения t (от момента бросания до момента падения на тот же

уровень) тело поднимается на максимальную высоту hmax , спускается с неё и отлетает от места бросания на расстояние L (дальность полета) - см. рисунок 1.

1) Время движения тела t можно найти, учитывая значения координат тела Sy в

Soy = 0, Sty = 0,

подставив значения Voy и (14) во второе уравнение системы (13), получаем

2) Дальность полета L можно найти, учитывая значения координат тела Sх в

начальный момент времени и в момент времени t (см. рис.1)

Soх = 0, Stх = L,

подставив значения Vox и (17) в первое уравнение системы (13), получаем

L = V 0 cosα × t ,

откуда, с учетом (16), получаем

L = V cosα ×

2V sin α

3) Максимальную высоту подъёма тела h max можно найти, учитывая значение

скорости тела V в точке максимального подъёма тела

V 0 x

Т.к. в этой точке V y

Используя вторые уравнения систем (11) и (13) ,

значение Voу , а также тот факт,

что в точке максимального подъёма тела Sy = hmax , получаем

0 = V 0 sin α - g × t под

gt под2

V 0 sin α × t -

h max

где tпод - время подъёма - время движения на высоту максимального подъёма тела.

Решая эту систему, получаем

t под =

V 0 sin α

sin 2 α

Сравнение значений (16) и (22), даёт основание сделать вывод

· время движения на высоту максимального подъёма тела (t под ) равно времени спуска тела (tсп ) с этой высоты и равно половине времени всего движения тела от момента бросания до момента падения на тот же уровень

t под

T сп

Изучать движение тела, брошенного со скоростью V 0 , вектор которой направлен под углом α к горизонту, в плоскости XOY, очень наглядно на компьютерной модели

"Свободное падение тел" в сборнике компьютерных моделей "Открытая физика"

компании ФИЗИКОН. В этой модели можно задавать разные начальные условия.

Например, рассмотренный нами случай нужно задавать (команда "Очистить") при начальном условии h = 0 и выбранных V0 и α. Команда "Старт" продемонстрирует движение тела и даст картинку траектории движения и направление векторов скорости тела в фиксированные моменты времени.

Рис.2. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки начала координат и падает на том же уровне .

Если условие задачи отличается от рассмотренного нами случая, то необходимо

для решения задачи, выбрав направление осей, разместить тело в начальный момент

времени, изобразить траекторию движения тела до точки падения, таким образом

определив координаты тела в начальный и конечный моменты времени. Затем

использовать уравнения (3), (5), (8) и (9) как основу для решения и рассмотренный выше

алгоритм решения задачи.

Рассмотрим частные случаи.

6 1. Тело бросили со скоростью V 0 , вектор которой направлен под углом α к

горизонту, с высоты h и оно упало на расстоянии L от места бросания. y в начальный

Soy = h,

а значения остальных координат будут выбраны так же, как мы выбирали.

Рис.3. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело движется из точки h = 50м и падает на нулевой уровень .

2. Тело бросили горизонтально со скоростью V 0 , с высоты h и оно упало на расстоянии L от места бросания. Отличие от рассмотренного нами случая заключается в том, значения координат тела S y в начальный момент определится так же уравнением (25),

а значения остальных координат будут выбраны так же, как мы выбирали. Но в этом случае начальная скорость тела в проекции на ось ОУ равна нулю (так как α = 0), т.е.

проекции вектора начальной скорости на оси ОХ и ОУ равны

V 0 y

Рис.4. Диалоговое окно компьютерной модели "Свободное падение тел" в разделе

"Механика"; тело, брошенное горизонтально, движется из точки h = 50м и падает на нулевой уровень .