Среди огромного количества многоугольников, которые по сути являются замкнутой непересекающейся ломаной линией, треугольник - это фигура с наименьшим количеством углов. Другими словами, это простейший многоугольник. Но, несмотря на всю свою простоту, эта фигура таит в себе много загадок и интересных открытий, которые освещаются особым разделом математики - геометрией. Эту дисциплину в школах начинают преподавать с седьмого класса, и теме «Треугольник» здесь уделяется особое внимание. Дети не только узнают правила о самой фигуре, но и сравнивают их, изучая 1, 2 и 3 признак равенства треугольников.

Первое знакомство

Один из первых правил, с которым знакомятся школьники, звучит примерно так: сумма величин всех углов треугольника равняется 180 градусам. Чтобы это подтвердить, достаточно при помощи транспортира измерить каждую из вершин и сложить все получившиеся значения. Исходя из этого, при двух известных величинах легко определить третью. Например : В треугольнике один из углов равен 70°, а другой - 85°, какова величина третьего угла?

180 - 85 - 70 = 25.

Ответ: 25°.

Задачи могут быть и более сложными, если указано лишь одно значение угла, а про вторую величину сказано лишь, на сколько или во сколько раз она больше или меньше.

В треугольнике для определения тех или иных его особенностей могут быть проведены особые линии, каждая из которых имеет свое название:

  • высота - перпендикулярная прямая, проведенная из вершины к противоположной стороне;
  • все три высоты, проведенные одновременно, в центре фигуры пересекаются, образуя ортоцентр, который в зависимости от вида треугольника может находиться как внутри, так и снаружи;
  • медиана - линия, соединяющая вершину с серединой противолежащей стороны;
  • пересечение медиан является точкой его тяжести, находится внутри фигуры;
  • биссектриса - линия, проходящая от вершины до точки пересечения с противолежащей стороной, точка пересечения трех биссектрис является центром вписанной окружности.

Простые истины о треугольниках

Треугольники, как, собственно, и все фигуры, имеют свои особенности и свойства. Как уже говорилось, эта фигура является простейшим многоугольником, но со своими характерными признаками:

  • против самой длинной стороны всегда лежит угол с большей величиной, и наоборот;
  • против равных сторон лежат равные углы, пример тому - равнобедренный треугольник;
  • сумма внутренних углов всегда равна 180°, что уже было продемонстрировано на примере;
  • при продлении одной стороны треугольника за его пределы образуется внешний угол, который всегда будет равен сумме углов, с ним не смежных;
  • любая из сторон всегда меньше суммы двух других сторон, но больше их разницы.

Виды треугольников

Следующий этап знакомства заключается в определении группы, к которой относится представленный треугольник. Принадлежность к тому или иному виду зависит от величин углов треугольника.

  • Равнобедренный - с двумя равными сторонами, которые называют боковыми, третья в этом случае выступает основанием фигуры. Углы у основания такого треугольника одинаковы, а медиана, проведенная из вершины, является биссектрисой и высотой.
  • Правильный, или равносторонний треугольник, - это тот, у которого все его стороны равны.
  • Прямоугольный: один из его углов равен 90°. В этом случае сторона, противолежащая этому углу, называется гипотенузой, а две другие - катетами.
  • Остроугольный треугольник - все углы меньше 90°.
  • Тупоугольный - один из углов больше 90°.

Равенство и подобие треугольников

В процессе обучения не только рассматривают отдельно взятую фигуру, но и сравнивают два треугольника. И эта, казалось бы, простая тема имеет массу правил и теорем, по которым можно доказать что рассматриваемые фигуры - равные треугольники. Признаки равенства треугольников имеют такое определение: треугольники равны, если их соответствующие стороны и углы одинаковы. При таком равенстве, если наложить эти две фигуры друг на друга, все их линии сойдутся. Также фигуры могут быть подобными, в частности, это касается практически одинаковых фигур, отличающихся лишь величиной. Для того чтобы сделать такое заключение о представленных треугольниках, необходимо соблюдение одного из следующих условий:

  • два угла одной фигуры равны двум углам другой;
  • две стороны одного пропорциональны двум сторонам второго треугольника, а величины углов, образованных сторонами, равны;
  • три стороны второй фигуры такие же, как и у первой.

Конечно, для бесспорного равенства, которое не вызовет ни малейшего сомнения, необходимо иметь одинаковые значения всех элементов обеих фигур, однако с использованием теорем задача значительно упрощается, и для доказательства равенства треугольников допускается наличие лишь нескольких условий.

Первый признак равенства треугольников

Задачи по этой теме решаются на основе доказательства теоремы, которая звучит так: "Если две стороны треугольника и угол, который они образуют, равны двум сторонам и углу другого треугольника, то и фигуры тоже равны между собой".

Как же звучит доказательство теоремы про первый признак равенства треугольников? Всем известно, что два отрезка равны, если они одной длины, или окружности равны, если имеют одинаковый радиус. А в случае с треугольниками есть несколько признаков, имея которые, можно предположить, что фигуры идентичны, что очень удобно использовать при решении разных геометрических задач.

Как звучит теорема «Первый признак равенства треугольников», описано выше, а вот ее доказательство:

  • Допустим, треугольники АВС и А 1 В 1 С 1 имеют одинаковые стороны АВ и А 1 В 1 и, соответственно, ВС и В 1 С 1 , а углы, которые образуются этими сторонами, имеют одну и ту же величину, то есть равны. Тогда, наложив △ ABC на △ А 1 В 1 С 1, получим совпадение всех линий и вершин. Отсюда вытекает, что эти треугольники абсолютно идентичны, а значит, равны между собой.

Теорему «Первый признак равенства треугольников» называют еще «По двум сторонам и углу». Собственно, в этом и заключается ее суть.

Теорема о втором признаке

Второй признак равенства доказывается аналогично, доказательство основывается на том, что при наложении фигур друг на друга они полностью совпадают по всем вершинам и сторонам. А звучит теорема так: "Если одна сторона и два угла, в образовании которых она участвует, соответствуют стороне и двум углам второго треугольника, то эти фигуры идентичны, то есть равны".

Третий признак и доказательство

Если как 2, так и 1 признак равенства треугольников касался как сторон, так и углов фигуры, то 3-й относится лишь к сторонам. Итак, теорема имеет следующую формулировку: "Если все стороны одного треугольника равны трем сторонам второго треугольника, то фигуры идентичны".

Чтобы доказать эту теорему, нужно более детально углубиться в само определение равенства. По сути, что означает выражение «треугольники равны»? Идентичность говорит о том, что если наложить одну фигуру на другую, все их элементы совпадут, это может быть только в том случае, когда их стороны и углы будут равны. В то же время угол, противолежащий одной из сторон, которая такая же, как у другого треугольника, будет равен соответствующей вершине второй фигуры. Следует отметить, что в этом месте доказательство легко перевести на 1 признак равенства треугольников. В случае если такая последовательность не наблюдается, равенство треугольников просто невозможно, за исключением тех случаев, когда фигура является зеркальным отражением первой.

Прямоугольные треугольники

В строении таких треугольников всегда есть вершины с величиной угла 90°. Поэтому справедливы следующие утверждения:

  • треугольники с прямым углом равны, если катеты одного идентичны катетам второго;
  • фигуры равны, если равны их гипотенузы и один из катетов;
  • такие треугольники равны, если их катеты и острый угол идентичны.

Этот признак относится к Для доказательства теоремы применяют приложение фигур друг к другу, в результате которого треугольники складывают катетами так, чтобы из двух прямых вышел со сторонами СА и СА 1 .

Практическое применение

В большинстве случаев на практике применяется первый признак равенства треугольников. На самом деле такая, казалось бы, простая тема 7 класса по геометрии и планиметрии используется и для вычисления длины, например, телефонного кабеля без замеров местности, по которой он будет проходить. При помощи этой теоремы легко сделать необходимые расчеты для определения длины острова, находящегося посреди реки, не переплывая на него. Либо укрепить забор, расположив планку в пролете так, чтобы она делила его на два равных треугольника, или же рассчитать сложные элементы работы в столярном деле, или при расчете стропильной системы крыши во время строительства.

Первый признак равенства треугольников имеет широкое применение в реальной «взрослой» жизни. Хотя в школьные годы именно эта тема для многих кажется скучной и совершенно ненужной.

При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

ТРЕУГОЛЬНИК.

Площадь треугольника.

1. ,

здесь - произвольная сторона треугольника, - высота, опущенная на эту сторону.


2. ,

здесь и - произвольные стороны треугольника, - угол между этими сторонами:

3. Формула Герона:

Здесь - длины сторон треугольника, - полупериметр треугольника,

4. ,

здесь - полупериметр треугольника, - радиус вписанной окружности.


Пусть - длины отрезков касательных.


Тогда формулу Герона можно записать в таком виде:

5.

6. ,

здесь - длины сторон треугольника, - радиус описанной окружности.

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:


Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

Это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.


Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника

,

здесь - медиана, проведенная к стороне , - длины сторон треугольника.

Биссектриса треугольника

Это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все точки биссектрисы угла равноудалены от сторон угла.

Высота треугольника

Это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.


Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Чтобы найти высоту треугольника , проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:

Центр окружности, описанной около треугольника , лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.

Радиус описанной окружности треугольника можно найти по таким формулам:

Здесь - длины сторон треугольника, - площадь треугольника.

,

где - длина стороны треугольника, - противолежащий угол. (Эта формула вытекает из теоремы синусов).

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если , то и наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:


Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Прямоугольный треугольник

- это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна 90°.

Гипотенуза - это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов :

Радиус окружности, вписанной в прямоугольный треугольник, равен

,

здесь - радиус вписанной окружности, - катеты, - гипотенуза:


Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:


Медиана прямоугольного треугольника, проведенная к гипотенузе , равна половине гипотенузы.

Определение синуса, косинуса, тангенса и котангенса прямоугольного треугольника смотрите

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:


Катет, лежащий против угла равен половине гипотенузы:

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

Угол при вершине.

И - боковые стороны,

И - углы при основании.

Высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник ) - это треугольник, все стороны и углы которого равны между собой.

Площадь правильного треугольника равна

где - длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник , совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший - радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

Это отрезок, соединяющий середины двух сторон.

На рисунке DE - средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE

Внешний угол треугольника

Это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.


Тригонометрические функции внешнего угла:

Признаки равенства треугольников:

1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.


2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.


3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.


Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.

Признаки подобия треугольников:

1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда

1) по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол A равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 . Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы угол A совместился с углом A 1 . Так как АВ=А 1 В 1 , а АС=А 1 С 1 , то B совпадёт с В 1 , а C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

2) по стороне и прилежащим к ней углам

Доказательство:

ПустьАВС и А 1 В 1 С 1 - два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы AB совпало с A 1 B 1. Так как ∠ВАС =∠В 1 А 1 С 1 и ∠АВС=∠А 1 В 1 С 1 , то луч АС совпадёт с А 1 С 1 , а ВС совпадёт с В 1 С 1 . Отсюда следует, что вершина C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

3) по трём сторонам

Доказательство :

Рассмотрим треугольники ABC и A l B l C 1, у которых АВ=А 1 В 1 , BC = B l C 1 СА=С 1 А 1. Докажем, что ΔАВС =ΔA 1 B 1 C 1 .

Приложим треугольник ABC (либо симметричный ему) к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной A 1 , вершина В — с вершиной В 1 , а вершины С и С 1 , оказались по разные стороны от прямой А 1 В 1 . Рассмотрим 3 случая:

1) Луч С 1 С про-ходит внутри угла А 1 С 1 В 1 . Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники A 1 C 1 C и В 1 С 1 С — равнобедренные . По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A 1 C 1 B 1 .

2) Луч С 1 С совпадает с одной из сторон этого угла. A лежит на CC 1 . AC=A 1 C 1 , BC=B 1 C 1 , C 1 BC - равнобедренный , ∠ACB=∠A 1 C 1 B 1 .

3) Луч C 1 C проходит вне угла А 1 С 1 В 1 . AC=A 1 C 1 , BC=B 1 C 1 , значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A 1 C 1 B 1 .

Итак, AC=A 1 C 1 , BC=B 1 C 1 , ∠C=∠C 1 . Следовательно, треугольники ABC и A 1 B 1 C 1 равны по
первому признаку равенства треугольников.

Теорема доказана.

2. Деление отрезка на n равных частей.

Провести луч через A, отложить на нём n равных отрезков. Через B и A n провести прямую и к ней параллельные через точки A 1 - A n -1. Отметим их точки пересечения с AB. Получим n отрезков, которые равны по теореме Фалеса.

Теорема Фалеса. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.


Доказательство. AB=CD

1. Проведём через точки A и C прямые, параллельные другой стороне угла. Получим два параллелограмма AB 2 B 1 A 1 и CD 2 D 1 C 1 . Согласно свойству параллелограмма : AB 2 = A 1 B 1 и CD 2 = C 1 D 1 .

2. ΔABB 2 =ΔCDD 2 ABB 2 CDD 2 BAB 2 DCD 2 и равны на основании второго признака равенства треугольников:
AB = CD согласно условию теоремы,
как соответственные, образовавшиеся при пересечении параллельных BB 1 и DD 1 прямой BD.

3. Аналогично каждый из углов и оказывается равным углу с вершиной в точке пересечения секущих. AB 2 = CD 2 как соответственные элементы в равных треугольниках.

4. A 1 B 1 = AB 2 = CD 2 = C 1 D 1

Билет 2

Вопрос 1

Признаки равенства треугольников (доказательство всех)

1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны )

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол А равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 , докажем, что треугольники равны.

Так как А 1 В 1 равно А 1 В 2 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 1 равен углу В 2 А 1 С 2, то луч А 1 С 2 совпадет с А 1 С 1 . Так как А 1 С 1 равен А 1 С 2 , то С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Пусть А 1 В 2 С 2 – треугольник, равный АВС, с вершины В 2 на луче А 1 В 1 и вершины С 2 в той же полуплоскости относительно прямой А 1 В 1 , где лежит вершина С 1 .

Так как А 1 В 2 равно А 1 В 1 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 2 равен углу В 1 А 1 С 1, и угол А1В1С2 равен углу А1В1С1, то луч А 1 С 2 совпадет с А 1 С 1 , а В 1 С 2 совпадет с В 1 С 1 . Отсюда следует, что вершина С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

3-ий признак равенства треугольников: по трем сторонам (Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, АС равно А 1 С 1 , и ВС равно В 1 С 1 . Докажем, что они равны.

Допустим, треугольники не равны. Тогда у них угол А не равен углу А 1 , угол В не равен углу В 1, и угол С не равен углу С 1 . Иначе они были бы равны, по перовому признаку.

Пусть А 1 В 1 С 2 – треугольник, равный треугольнику АВС, у которого Свершина С 2 лежит в одной полуплоскости с вершиной С 1 относительно прямой А 1 В 1 .

Пусть D – середина отрезка С 1 С 2 . Треугольники А 1 С 1 С 2 и В 1 С 1 С 2 – равнобедренные с общим основанием С 1 С 2 . Поэтому их медианы А 1 D и В 1 D – являются высотами, значит прямые А 1 D и В 1 D – перпендикулярны прямой С 1 С 2. Прямые А 1 D и В 1 D не совпадают, так как точки А 1, В 1 , D не лежат на одной прямой, но через точку D прямой С 1 С 2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Сумма углов треугольника.

Внешний угол треугольника. Признаки равенства треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы,срединны e перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольномтреугольнике.

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Если все три угла острые (рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21), то это прямоугольный треугольник ; стороны a , b , образующие прямой угол, называются катетами ; сторона c , противоположная прямому углу, называется гипотенузой . Если один из углов тупой ( B, рис.22), то это тупоугольный треугольник.


Треугольник ABC (рис.23) - равнобедренный , если две его стороны равны (a = c ); эти равные стороны называются боковыми , третья сторона называется основанием треугольника. Треугольник ABC (рис.24) – равносторонний , если все его стороны равны (a = b = c ). В общем случае (a b c ) имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 º .

Из двух последних свойств следует, что каждый угол в равностороннем

треугольнике равен 60 º.

4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний

угол BCD. Внешний угол треугольника равен сумме внутренних углов,

не смежных с ним : BCD = A + B.

5. Любая сторона треугольника меньше суммы двух других сторон и больше

их разности (a < b + c , a > b c ;b < a + c , b > a c ;c < a + b ,c > a b ).

Признаки равенства треугольников.

Треугольники равны, если у них соответственно равны:

a ) две стороны и угол между ними;

b ) два угла и прилегающая к ним сторона;

c ) три стороны.

Признаки равенства прямоугольных треугольников.

Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике.

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника (точка O , рис.26) расположен внутри треугольника, а ортоцентр тупоугольного треугольника (точка O , рис.27) снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника (AD , BE , CF , рис.28) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника (AD , BE , CF , рис.29) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС (KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга (точки K , M , N – середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .

Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна (a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть

c 2 + 4 (ab / 2) = c 2 + 2 ab ,

отсюда ,

c 2 + 2 ab = (a + b ) 2 ,

и окончательно имеем:

c 2 = a 2 + b 2 .

Соотношение сторон в произвольном треугольнике.

В общем случае (для произвольного треугольника) имеем:

c 2 = a 2 + b 2 2ab · cos C,

где C – угол между сторонами a и b .