1.6. ПРОДУКТЫ ГОРЕНИЯ

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху = 1.52. Плотность углекислого газа при температуре Т = 0 0 С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg ) равна 1.96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1.29 кг/м 3). Углекислый газ хорошо растворим в воде (при Т = 15 0 С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO .

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1.5% безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 0 С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 0 С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность = 0.97. Плотность угарного газа при Т = 0 0 С и р = 760 мм Hg составляет 1.25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0.4% смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Сернистый газ

Сернистый газ (SO 2 ) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа = 2.25. Плотность этого газа при Т = 0 0 С и р = 760 мм Hg составляет 2.9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 0 С в одном литре воды растворяется восемьдесят литров SO 2 , а при Т = 20 0 С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Дым

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет 10 -4 –10 -6 см (от 1 до 0.01 мкм). Отметим, что 1 мкм (микрон) равен 10 -6 м или 10 -4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO 2 , CO , N 2 , SO 2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

Лекция

Горение в большинстве случаев сложный химический процесс. Он состоит из элементарных химических реакций окислительно-восстановительного типа, приводящих к перераспределению валентных электронов между атомами взаимодействующих молекул. Окислителями могут быть самые различные вещества: хлор, бром, сера, кислород, кислородсодержащие вещества и т. п. Однако чаще всего приходится иметь дело с горением в атмосфере воздуха, при этом окислителем является кислород. Известно, что воздух представляет собой смесь газов, основными компонентами которой являются азот (78%), кислород (21%) и аргон (0,9%). Аргон, содержащийся в воздухе, является инертным газом и в процессе горения участия не принимает. Азот в процессе горения органических веществ также практически участия не принимает.

Для многих расчетов (определение объема воздуха, необходимого для сгорания одной массовой или объемной единицы вещества, нахождение объема продуктов сгорания, температуры горения и т. п.) необходимо составлять уравнения реакций горения веществ в воздухе. При составлении этих уравнений поступают следующим образом: горючее вещество и участвующий в горении воздух пишут в левой части, после знака равенства пишут образующиеся продукты реакции. Например, необходимо составить уравнение реакции горения метана в воздухе. Сначала записывают левую часть уравнения реакции: химическую формулу метана плюс химические формулы веществ, входящих в состав воздуха. Для простоты расчетов принимают, что воздух состоит из 21 % кислорода и 79% азота, т. е. на один объем кислорода в воздухе приходится 79/21 = 3,76 объема азота, или на каждую молекулу кислорода приходится 3,76 молекулы азота. Таким образом, состав воздуха может быть представлен так: О 2 +З,76 N 2 . Тогда левая часть уравнения будет иметь вид CH 4 +O 2 + 3,76N 2 =

Какие будут получаться продукты? Ориентироваться необходимо на состав горючего

вещества. Углерод горючего всегда при полном сгорании превращается в диоксид углерода

(СО 2), водород - в воду (Н 2 О). Так как в данном горючем веществе нет других

элементов, то в продуктах сгорания будет диоксид углерода и вода. Азот воздуха (3,76 N 2) в

процессе горения участия не принимает, он целиком перейдет в продукты сгорания. Таким

образом, правая часть уравнения реакции горения метана будет следующей:

CO 2 + H 2 O + 3,76N 2

Написав левую и правую части, необходимо найти коэффициенты перед формулами. Известно, что суммарная масса веществ, вступивших в реакцию, должна быть равна массе всех веществ, получившихся в результате реакции. Это означает, что число атомов одного и того же элемента в правой и левой частях уравнения должно быть одинаковым, независимо от того, в состав какого вещества этот элемент входит. Сначала уравнивают число атомов углерода, затем водорода, потом кислорода. Множитель перед коэффициентом (3,76), поставленный у молекулы азота, всегда будет равен коэффициенту перед кислородом. Уравнение реакции будет иметь вид



СН 4 + 2О 2 + 2-3,76N 2 = СО 2 + 2Н 2 О + 2-3,76N 2

Учитывая, что расчет ведут обычно на 1 моль или 1 м 3 горючего вещества, в уравнении реакции коэффициент перед горючим веществом не ставят. Поэтому в некоторых уравнениях реакций горения могут появиться перед кислородом или другим веществом дробные коэффициенты; например, уравнение реакции горения ацетилена в воздухе будет иметь вид

C 2 H 2 + 2,5O 2 +2,5-3,76N 2 = 2CO 2 + H 2 O + 2,5-3,76N 2

Если в состав горючего вещества, кроме углерода и водорода, входит азот, то он выделяется при горении в свободном виде N 2 , например при горении пиридина

C 2 H 6 N + 6,25О 2 + 6,25 - 3,76N 2 = = 5СО 2 + 2,5Н 2 О + 6,25-3,76N 2 + 0,5N 2-

Если в состав горючего вещества входит хлор, то он при горении обычно выделяется в виде хлористого водорода, например при горении хлористого винила

СН а =СНС1 + 2,5О 2 + 2,5-3,76N 2 = 2СО 2 + Н 2 О + 2,5-3,76N 2 + HC1

Сера, входящая в состав горючего вещества, выделяется в виде SO 2 .

Содержащийся в горючем веществе кислород выделяется в виде соединений с другими элементами горючего, например СО 2 или Н 2 О, в свободном виде он не выделяется. При горении веществ, богатых кислородом, как правило, требуется меньше воздуха. Сгорание веществ может происходить также за счет кислорода, находящегося в составе других веществ, способных его легко отдавать. Такими веществами являются азотная кислота HNO 3 , бертолетова соль КСЮ 3 , селитра KNO 3 , NaNO 3 , NH4NO 3 , перманганат калия КМпО 4 , пероксид бария ВаО 2 и др. Смеси перечисленных выше окислителей с горючими веществами взаимодействуют с большой скоростью, часто со взрывом. Примером таких смесей может служить черный порох, сигнальные осветительные составы и т. п.

Чтобы возникло горение, необходимы определенные условия: наличие горючего вещества, окислителя (кислорода) и источника зажигания. Горючее вещество и окислитель должны быть нагреты до определенной температуры источником тепла (источником зажигания): пламенем, искрой, накаленным телом или теплом, выделяемым при какой-либо химической реакции или механической работе. В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где происходит реакция, выделяется тепло и свет. Для возникновения и протекания процесса горения горючее вещество и окислитель должны находиться в определенном количественном соотношении.

Сгорание веществ может быть полным и неполным. При полном сгорании образуются продукты, не способные к дальнейшему горению (СО 2 , Н 2 О, НС1); при неполном - получающиеся продукты способны к дальнейшему горению (СО, H 2 S, HCN, NH 3 , альдегиды и т. д.). В условиях пожара при горении органических веществ на воздухе чаще всего полного сгорания не происходит. Признаком неполного сгорания является наличие дыма, содержащего несгоревшие частицы углерода.

Однако как бы ни проходил процесс горения, в основе его лежит химическое взаимодействие между горючим веществом и окислителем.

Современная теория окисления - восстановления основана на следующих положениях. Сущность окисления состоит в отдаче окисляющимся веществом (восстановителем) валентных электронов окислителю, который, принимая электроны, восстанавливается. Сущность восстановления состоит в присоединении восстанавливающимся веществом (окислителем) электронов восстановителя, который, отдавая электроны, окисляется. В результате передачи электронов изменяется структура внешнего (валентного) электронного уровня атома. Каждый атом при этом переходит в наиболее устойчивое в данных условиях состояние.

В химических процессах электроны могут полностью переходить из электронной оболочки атомов одного вида в оболочку атомов другого вида. Так, при горении металлического натрия в хлоре атомы натрия отдают по одному электрону атомам хлора. При этом на внешнем электронном уровне атома натрия оказывается восемь электронов (устойчивая структура), а атом, лишившийся одного электрона, превращается в положительно заряженный ион. У атома хлора, получившего один электрон, внешний уровень заполняется восемью электронами, но атом превращается в отрицательно заряженный ион. В результате действия кулоновских электростатических сил происходит сближение разноименно заряженных ионов и образуется молекула хлорида натрия (ионная связь)

Na + + Cl - à + Na+Сl

В других процессах электроны внешних оболочек двух различных атомов как бы поступают в общее пользование, стягивая тем самым атомы в молекулы (ковалентная связь)

Н. + . С1 à Н: С1:

И, наконец, один атом может отдавать в общее пользование свою пару электронов

:O: + :Са à O:Са

Но во всех случаях атомы стремятся приобрести устойчивые внешние электронные структуры.

Процесс горения - весьма активный процесс, протекающий с выделением значительного количества энергии (в виде тепла и света). Следовательно, в этом процессе происходит такое превращение веществ, при котором из менее устойчивых веществ получаются более устойчивые.

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом в процессе горения. Состав их зависит от состава горящего вещества и условий его горения. В условиях пожара чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят главным образом углерод, водород, кислород и азот. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО 2 , Н 2 О, N 2 . При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

Продукты сгорания называют влажными , если при расчете их состава учитывают содержание паров воды, и сухими , если содержание паров воды не входит в расчетные формулы.

Реже во время пожара горят неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами сгорания их в большинстве случаев являются твердые вещества, например Р 2 О 5 , Na 2 O 2 , CaO, MgO. Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

Дым представляет собой дисперсную систему, состоящую из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом. Диаметр частиц дыма колеблется от 1 до 0,01 мкм. Объем дыма, образующегося при горении единицы массы (кг)

или объема (м 3) горючего вещества в теоретически необходимом объеме воздуха (L=1) приведен в табл. 1.2.

Таблица 1.2

Объем дыма при горении горючих веществ

Наименование

горючего вещества

Объем дыма, м 3 /кг

Наименование

горючего газа

Объем дыма, м 3 / м 3

Ацетилен

Древесина (сосна) (W = 20 %)

Природный газ

В составе дыма, образующегося на пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

Состав продуктов термоокислительного разложения зависит от природы горючих веществ, температуры и условий контакта с окислителем. Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молекулах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, оксиды азота и другие соединения. Так, в дыме при горении капрона содержится цианистый водород, при горении линолеума «Релин» – сероводород, диоксид серы, при горении органического стекла – оксиды азота. Продукты неполного сгорания и термоокислительного разложения в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Горючее вещество – индивидуальное химическое соединение. В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле

где - объем влажных продуктов сгорания, м 3 /кг; , , , — число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравне- нии реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

Пример 1.2. Определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях. Составляем уравнение реакции горения ацетона в воздухе

Определяем объем сухих продуктов сгорания ацетона

Объем влажных продуктов сгорания 1 м 3 горючего вещества (газа) можно рассчитать по формуле

, (1.10)

где - объем влажных продуктов сгорания 1 м 3 горючего газа, м 3 /м 3 ; , , , — число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Горючее вещество – сложная смесь химических соединений. Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид

С + О 2 + 3,76N 2 = СО 2 + 3,76N 2 .

При сгорании 1 кг углерода получается 22,4/12 = 1,86 м 3 СО 2 и 22,4×3,76/12 =7,0 м 3 N 2 .

Аналогично определяют объем (в м 3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

Углерод ………..

Водород ………..

Сера ……………

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.


Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 . В воздухе при 0 0 С и давлении 101 325 Па на 1 кг кислорода приходится 3,76×22,4/32=2,63 м 3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Пример 1.3. Определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N , 2,5 % S , W = 3,8 %, A =11,0 %.

Объем продуктов сгорания будет следующий, м 3 (табл. 1.3).

Объем продуктов сгорания каменного угля

Состав продуктов сгорания

Углерод

1,86 × 0,758 = 1,4

Водород

11,2 × 0,038 = 0,425

Сера

Азот в горючем веществе

Влага в горючем веществе

1,24 × 0,03 = 0,037

Сумма

Продолжение табл. 1.3

Состав продуктов сгорания

N 2

Углерод

7 × 0,758 = 5,306

Водород

21 × 0,038 = 0,798

Сера

2,63 × 0,025 = 0,658

0,7 × 0,025 = 0,017

Азот в горючем веществе

0,8 × 0,011 = 0,0088

Влага в горючем веществе

Сумма

6,7708 - 0,0736 = 6,6972

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м 3 . Итог табл. 1.3 указывает состав продуктов сгорания каменного угля. Объем влажных продуктов сгорания 1 кг каменного угля равен

=1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м 3 /кг.

Горючее вещество – смесь газов. Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

СН 4 + 2О 2 + 2×3,76N 2 = СО 2 + 2Н 2 О + 7,52N 2 .

Согласно этому уравнению, при сгорании 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота. Аналогично определяют объем (в м 3) продуктов сгорания 1 м 3 различных газов:

Водород ……………….

Окись углерода ……….

Сероводород ………….

Метан …………………

Ацетилен ………………

Этилен …………………

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14 – 16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

В подвалах ………

На чердаках …….

Пример 1.4. Определить коэффициент избытка воздуха при пожаре в помещении, если во взятом на анализе дыме содержалось 19 % (об.) О 2 . Коэффициент избытка воздуха находим, пользуясь формулой (1.8).

.

После изучения вопроса о продуктах сгорания решите самостоятельную задачу.

Задача 1.3. Определить объем влажных продуктов сгорания 1 м 3 доменного газа, состоящего из 10,5 % СО 2 , 28 % СО, 0,3 % СН 4 , 2,7 % Н 2 и 58,5 % N 2 .

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

Ответ: V n.c = 1,604 м 3 /м 3 .

Горение – химический процесс соединения топлива с окислителем, сопровождающийся интенсивным тепловыделением и резким повышением температуры продуктов сгорания.

Горение сопровождается смесеобразованием, диффузией, воспламенением, теплообменом и другими процессами, протекающими в условиях тесной взаимосвязи.

Различают гомогенное и гетерогенное горение. При гомогенном горении тепло- и массообмен протекают между веществами, находящимися в одинаковом агрегатном состоянии (обычно газообразном).

Гетерогенное горение свойственно жидкому и твердому топливам.

Скорость химической реакции зависит от концентрации реагирующих веществ, температуры и давления и определяется произведением концентраций реагирующих веществ

где k 0 – эмпирическая константа.

Энергия активации E – это наименьшая энергия (для газовых смесей 85–170 МДж/кмоль), которой должны обладать молекулы в момент столкновения, чтобы быть способными к химическому взаимодействию. Разность энергий активации прямой и обратной реакции составляет тепловой эффект химической реакции.

Реакции характеризуются сильной экзотермичностью, обусловливающей рост температуры. Влияние температуры на скорость реакции значительно сильнее влияния концентрации реагирующих веществ. Поэтому, несмотря на уменьшение концентрации реагирующих веществ при горении, скорость реакции горения увеличивается и достигает максимума после выгорания 80–90% горючих веществ. Реакции горения газообразного топлива протекают практически мгновенно, что объясняется не только сильным влиянием температуры, но и цепным характером их протекания.

Скорость реакции зависит также от давления
(n – порядок реакции).

Процесс горения топлива имеет две области: кинетическую, в которой скорость горения топлива определяется скоростью химической реакции, и диффузионную, в которой регулятором скорости выгорания является скорость смесеобразования. Примером кинетической области горения является горение однородной газовоздушной смеси. Диффузионно горит газообразное топливо, вводимое в реакционную камеру отдельно от окислителя.

Кинетическая область химического воздействия на скорость горения наиболее сильно ощущается при низких концентрациях, температурах и давлениях в смеси. В этих условиях химическая реакция может настолько замедлиться, что сама станет тормозить горение. Диффузионная область воздействия на скорость выгорания топлива проявляется при высоких концентрациях и температурах. Химическая реакция протекает очень быстро, и задержка в горении может быть вызвана недостаточно высокой скоростью смесеобразования.

Процесс смесеобразования практически не зависит от температуры.

Кинетическое горение готовой горючей смеси при турбулентном режиме движения очень неустойчиво. Поэтому в высокопроизводительных промышленных топочных устройствах при турбулентном режиме движения газовоздушных потоков горение является в основном диффузионным.

Процесс горения горючей смеси может начаться путем самовоспламенения или принудительного воспламенения (электрическая искра, факел и т.п.). Температура самовоспламенения определяется соотношением количества теплоты, выделяющегося при горении и отдаваемого во внешнюю среду. Количество теплоты, выделяющееся при горении, зависит от температуры и изменяется по экспоненте 1 (рис. 1.1)

где α – коэффициент теплоотдачи; A – площадь поверхности;T с - температура охлаждаемой стенки.

При небольшом отводе теплоты (прямая 2""" ) количество выделяемой теплотыq в >q от, поэтому реакция сопровождается повышением температуры системы, приводящим к самовоспламенению.

При большем отводе теплоты (прямая 2"" ) в точке Вq в =q от. ТемператураT в в этой точке называется температурой воспламенения горючей смеси. Она зависит от условий отвода теплоты и не является физико-химической константой, характеризующей данную горючую смесь. При увеличении отвода теплоты (прямая2" ) самовоспламенение невозможно. Точка А соответствует стабилизированному окислению в области низких температур, а точка Б – неустойчивому равновесию в области высоких температур.

Температура воспламенения может быть найдена из условий

q в =q от иdq в /dT =dq от /dT ,

определяемых точкой В (см. рис. 1.1).

С учетом уравнений (1.8) и (1.9) имеем
. Решив это уравнение, получим

.

Температура воспламенения T в для некоторых газов приведена в табл. 1.4.

Минимальная и максимальная концентрации горючей составляющей, ниже и выше которых не происходит принудительное воспламенение смеси, называются концентрационными пределами воспламенения (табл. 1.4); они зависят от количества и состава негорючих составляющих газообразного топлива, повышающих нижний и понижающих верхний пределы воспламенения.

Общие сведения о горении

Сущность процесса горения

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вначале оно использовалось для приготовления пищи и обогрева, и лишь через тысячелетия человек научился использовать его для преобразования энергии химической реакции в механическую, электрическую и другие виды энергии.


Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением. В печах, двигателях внутреннего сгорания, на пожарах всегда наблюдается процесс горения, в котором участвуют какие-либо горючие вещества и кислород воздуха. Между ними протекает реакция соединения, в результате которой выделяется тепло и продукты реакции нагреваются до свечения. Так горят нефтепродукты, дерево, торф и многие другие вещества.


Однако процесс горения может сопровождать не только реакции соединения горючего вещества с кислородом воздуха, но и другие химические реакции, связанные со значительным выделением тепла. Водород, фосфор, ацетилен и другие вещества горят, например, в хлоре; медь - в парах серы, магний - в углекислом газе. Сжатый ацетилен хлористый азот и ряд других веществ способны взрываться. В процессе взрыва происходит разложение веществ с выделением тепла и образованием пламени. Таким образом, процесс горения является результатом реакций соединения и разложения веществ.

Условия, способствующие горению

Для возникновения горения необходимы определенные условия: наличие горючей среды (горючее вещество + окислитель) и источника воспламенения. Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность воспламенения и горения этой системы.


Как известно, основными горючими элементами в природе являются углерод и водород. Они входят в состав почти всех твердых, жидких и газообразных веществ, например, древесины, ископаемых углей, торфа, хлопка, ткани, бумаги и др.


Воспламенение и горение большинства горючих веществ происходит в газовой или паровой фазе. Образование паров и газов у твердых и жидких горючих веществ происходит в результате их нагревания. Твердые горючие вещества, например, сера, стеарин, фосфор, некоторые пластмассы при нагревании плавятся и испаряются. Дерево, торф, каменный уголь при нагревании разлагаются с образованием паров, газов и твердого остатка - угля.


Рассмотрим этот процесс подробнее на примере древесины. При нагревании до 110°С происходит высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130°С. Более заметное разложение древесины (изменение цвета) происходит при 150°С и выше. Образующиеся при 150-200°С продукты разложения составляют, в основном, воду и углекислый газ, поэтому гореть не могут.


При температуре выше 200°С начинает разлагаться главная составная часть древесины - клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительное количество окиси углерода-, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.


Все горючие жидкости способны испаряться, и горение их происходит в газовой фазе. Поэтому, когда говорят о горении или воспламенении жидкости, то под этим подразумевают горение или воспламенение ее паров.


Горение всех веществ начинается с их воспламенения. У большинства горючих веществ момент воспламенения характеризуется появлением пламени, а у тех веществ, которые пламенем не горят, - появлением свечения (напала).


Начальный элемент горения, возникающий под действием источников, имеющих более высокую температуру, чем температура самовоспламенения вещества, называется воспламенением.


Некоторые вещества способны без воздействия внешнего источника тепла выделять теплоту и самонагреваться. Процесс самонагревания, заканчивающийся горением, принято называть самовозгоранием.


Самовозгорание - это способность вещества воспламеняться не только при нагревании, но и при комнатной температуре под воздействием химических, микробиологических и физико-химических процессов.


Температура, до которой нужно нагреть горючее вещество, чтобы оно воспламенилось без поднесения к нему источника зажигания, называется температурой самовоспламенения.


Процесс самовоспламенения вещества проходит следующим образом. При нагревании горючего вещества, например, смеси паров бензина с воздухом, можно достигнуть такой температуры, при которой в смеси начинает протекать медленная реакция окисления. Реакция окисления сопровождается выделением тепла, и смесь начинает нагреваться выше той температуры, до которой ее нагрели.


Однако вместе с выделением тепла и повышением температуры смеси происходит теплоотдача от реагирующей смеси в окружающую среду. При малой скорости окисления величина теплоотдачи всегда превышает выделение тепла, поэтому температура смеси после некоторого повышения начинает снижаться и самовоспламенение не происходит. Если смесь нагреть извне до более высокой температуры, то вместе с увеличением скорости реакции увеличивается количество тепла, выделяемого в единицу времени.


При достижении определенной температуры тепловыделение начинает превышать теплоотдачу, и реакция приобретает условия для интенсивного ускорения. В этот момент происходит самовоспламенение вещества. Температура самовоспламенения у горючих веществ разная.



Процесс самовоспламенения, рассмотренный выше, является характерным явлением, присущим всем горючим веществам, в каком бы агрегатном состоянии они не находились. Однако в технике и быту горение веществ возникает вследствие воздействия на них пламени, искр или накаленных предметов.


Температура указанных источников воспламенения всегда выше температуры самовоспламенения горючих веществ, поэтому горение возникает очень быстро. Вещества, способные самовозгораться, делятся на три группы. К первой относятся вещества, способные самовозгораться при контакте с воздухом, ко второй со слабо нагретыми предметами. К третьей группе относятся вещества, которые самовозгораются при контакте с водой.


Например, склонными к самовозгоранию могут быть растительные продукты, древесный уголь, сульфаты железа, бурый уголь, жиры и масла, химические вещества и смеси.


Из растительных продуктов склонны к самовозгоранию сено, солома, клевер, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.


Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура повышается.


При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.


Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.


Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.


При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.


Некоторые химические вещества способны самовозгораться при соприкосновении с воздухом. К ним относится фосфор (белый, желтый), фосфористый водород, цинковая пыль, алюминиевая пудра, металлы: рубидий, цезий и др. Все эти вещества способны окисляться на воздухе с выделением тепла, за счет которого реакция ускоряется до самовоспламенения.


Калий, натрий, рубидий, цезий, карбид кальция, карбиды щелочных и щелочно-земельных металлов энергично соединяются с водой, и при взаимодействии выделяют горючие газы, которые, будучи нагреты за счет теплоты реакции, самовозгораются.


При смешении таких окислителей, как сжатый кислород, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцевокислый калий, селитра и др., с органическими веществами, происходит процесс самовозгорания этих смесей.


Пожарная опасность веществ и материалов определяется не только их способностью воспламеняться, но и массой других факторов: интенсивностью самого процесса горения и сопутствующих горению явлений (образование дыма, токсичных паров и т.д.), возможностью прекращения этого процесса. Общим показателем пожарной опасности является горючесть.


Согласно этому показателю все вещества и материалы условно делятся на три группы: негорючие, трудногорючие, горючие.


Негорючими считаются вещества и материалы, неспособные к горению в воздухе (около 21 % кислорода). К ним относятся сталь, кирпич, гранит и т.д. Однако было бы ошибкой относить негорючие материалы к безопасным в пожарном отношении. Не горючими, но пожароопасными считаются сильные окислители (азотная и серная кислоты, бром, перекись водорода, перманганаты и др.); вещества, выделяющие горючие газы при нагревании, при реакции с водой, вещества, реагирующие с водой с выделением большого количества тепла, например, негашеная известь.


Трудногорючие - это вещества и материалы, способные гореть в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления.


Горючие - это вещества и материалы, способные самовозгораться, возгораться от источника зажигания и гореть после его удаления.