Закон сохранения массы является основой для расчета физических процессов во всех сферах человеческой деятельности. Его справедливость не оспаривается ни физиками, ни химиками, ни представителями других наук. Этот закон, как строгий бухгалтер, следит за соблюдением точной массы вещества до и после его взаимодействия с другими веществами. Честь открытия этого закона принадлежит русскому ученому М. В. Ломоносову.

Первоначальные представления о составе веществ

Строение вещества на протяжении многих веков оставалось тайной для любого человека. Различные гипотезы будоражили ученые умы и подвигали мудрецов на длительные и бессмысленные споры. Один утверждал, что все состоит из огня, другой отстаивал совершенно иную точку зрения. В массе теорий промелькнула и была незаслуженно забыта теория древнегреческого мудреца Демокрита о том, что все вещества состоят из крошечных, невидимых глазу мельчайших частиц вещества. Демокрит назвал их «атомами», что значит «неделимые». К сожалению, в течение целых 23 веков его предположение было забыто.

Алхимия

В основном научные данные средних веков базировались на предрассудках и различных домыслах. Возникает и широко распространяется алхимия, которая представляла собой свод скромных практических познаний, тесно сдобренных самыми фантастическими теориями. Например, известные умы того времени старались превратить свинец в золото и найти неведомый философский камень, исцеляющий от всех болезней. В процессе поисков постепенно накапливался научный опыт, состоящий из многих необъясненных реакций химических элементов. Например, было выяснено, что многие вещества, названные впоследствии простыми, не распадаются. Таким образом возродилась древняя теория о неделимых частичках материи. Понадобился великий ум, чтобы превратить этот склад информации в стройную и логичную теорию.

Теория Ломоносова

Точным количественным методом исследования химия обязана русскому ученому М. В. Ломоносову. За блестящие способности и упорный труд он получил звание профессора химии и стал членом Российской академии наук. При нем была организованна первая в стране современная химическая лаборатория, в которой и был открыт знаменитый закон сохранения массы веществ.

В процессе изучения течения химических реакций Ломоносов взвешивал исходные химические вещества и продукты, появившиеся после проведения реакции. При этом он открыл и сформулировал закон сохранения массы вещества. В 17 веке понятие массы часто путали с термином «вес». Поэтому массы веществ часто называли «весами». Ломоносов определил, что строение вещества находится в прямой зависимости от частичек, из которых оно построено. Если содержит частички одного сорта, то такое вещество ученый называл простым. При разнородном составе корпускул получается сложное вещество. Эти теоретические данные позволили Ломоносову сформулировать закон сохранения массы.

Определение закона

После многочисленных экспериментов М. В. Ломоносов установил закон, суть которого сводилась к следующему: вес веществ, которые вступили в реакцию, равен весу веществ, которые получились в итоге реакции.

В русской науке данный постулат носит название «Закон сохранения массы веществ Ломоносова».

Это закон был сформулирован в 1748 году, а самые точные эксперименты с реакцией обжига металлов в запаянных сосудах были проведены в 1756 году.

Опыты Лавуазье

Европейская наука открыла закон сохранения массы после публикации описания работ великого французского химика Антуана Лавуазье.

Этот ученый смело применял в своих экспериментах теоретические представления и физические методы того времени, что позволило ему разработать химическую номенклатуру и создать реестр всех известных на то время химических веществ.

Своими экспериментами Лавуазье доказал, что в процессе любой химической реакции соблюдается закон сохранения массы веществ, вступающих в соединение. Кроме этого, он расширил распространение закона сохранения на массу каждого из элементов, которые принимали участие в реакции в составе сложных веществ.

Таким образом, на вопрос, кто открыл закон сохранения массы веществ, можно ответить двояко. М. В. Ломоносов первым провел эксперименты, наглядно демонстрирующие закон сохранения, и подвел его под теоретическую базу. А. Лавуазье в 1789 году независимо от русского ученого самостоятельно открывает закон сохранения масс и распространяет его принцип на все элементы, участвующие в химической реакции.

Масса и энергия

В 1905 году великий А. Эйнштейн показал связь между массой вещества и его энергией. Она выражалась формулой:

Уравнение Эйнштейна подтверждает закон сохранения массы и энергии. Данная теория утверждает, что всякая энергия имеет массу и изменение этой энергии несет изменение массы тела. Потенциальная энергия любого тела очень велика, и высвободиться она может лишь в особых условиях.

Закон сохранения массы справедлив для любых тел микро- и макромира. Любая химическая реакция принимает участие в преобразовании внутренней энергии вещества. Поэтому при расчете массы веществ, участвующих в химических реакциях, нужно было бы учитывать прирост или убыль массы, вызванных выделением или поглощением энергии в данной реакции. На самом деле в макромире этот эффект настолько незначителен, что такие изменения можно не принимать во внимание.

Открытие молекул и атомов явилось важнейшим событием в развитии атомно-молекулярной теории. Ещё в 1748 году великий русский учёный Михаил Васильевич Ломоносов сформулировал закон сохранения массы как философскую концепцию. Он впоследствии сам же подвёл под её доказательство мощную практико-теоретическую базу, и произошло это в 1756 году. Параллельно с российским учёным над этой проблемой работал химик-француз А.Л.Лавуазье. Свой вариант доказательства он предложил в 1789 году.

Закон сохранения массы вещества гласит, что сумма масс всех веществ, которые вступают в химическую реакцию, численно равна массе веществ, являющихся продуктами реакции. Первоначальные способы практически доказать тогда ещё предположение о сохранении масс не увенчались успехом. Дело в том, что опыты, которые проводились ещё до Ломоносова, основывались на сжигании веществ. Результаты взвешивания до и после реакции никак не согласовывались с очевидной, но не подтверждённой на практике теорией. Нагревание на воздухе ртути в результате давало красную окалину, и масса её была больше чем масса вступающего в реакцию металла. С золой, появляющейся после сгорания древесины, результат был противоположный, масса продукта всегда оказывалась меньше массы вещества до осуществления реакции.

Заключается в том, что он, чтобы доказать закон сохранения массы, впервые проводил опыт с замкнутыми системами. Простота опыта в очередной раз доказала гениальность российского учёного. Прокаливаемые металлы Ломоносов помещал в запаянный стеклянный сосуд. После успешно проведенной реакции вес сосуда оставался неизменным. И только когда сосуд разбивали, и вовнутрь устремлялся воздух, наблюдалось увеличение массы сосуда.

Теоретическое объяснение проведённого эксперимента было дано присоединительным характером реакции горения металла. Увеличение массы происходило за счёт присоединения атомов кислорода в продукт окисления. Доказав закон сохранения массы, Ломоносов осуществил весомый вклад в развитие атомно-молекулярной теории. Практически он ещё раз доказал, что атомы химически неделимы. Конструкции молекул в ходе реакций меняются, они обмениваются между собой атомами, но суммарное их количество (атомов) в замкнутой системе остаётся неизменным. Соответственно и общая масса вещества является величиной постоянной.

Закон сохранения массы стал первым вкладом в познании более глобальной природной закономерности. Дальнейшие исследования в этом направлении позволили выявить, что в замкнутых системах происходит не только сохранение масс. Энергия изолированной системы тоже является величиной постоянной. Любой процесс, происходящий в не производит и не уничтожает ни массу, ни энергию. А выявленная закономерность впоследствии получила название: закон сохранения массы и энергии. стали лишь доказательством частного случая величайшего закона природы.

Но на этом познание окружающего нас мира не заканчивается. Труды Эйнштейна продвинули науку ещё дальше, в своей теории он не только доказал взаимосвязь энергии и массы, но и сделал смелое предположение о возможности их преобразования. То, что сейчас кажется понятным обыкновенному школьнику, формировалось в ходе практических опытов и теоретических исследований на протяжении трех последних столетий. Учёные в самых различных областях естествознания по крупицам собирали мощную платформу для доказательства закономерностей и осознания понятий «энергия» и «масса».

Не только физика и химия, но и множество других наук активно используют взаимосвязь и принцип сохранения массы и энергии. Биология, география, астрономия находят применение закону сохранения массы и энергии. Даже философия под влиянием этого закона сформировала современное представление человека о бытии.

Закон сохранения массы веществ один из важнейших законов химии. Его открыл М. В. Ломоносов, а позже экспериментально подтвердил А. Лавуазье. Так в чем же состоит суть этого закона?

История

Закон сохранения массы веществ впервые сформулировал М. В. Ломоносов в 1748 году, а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756 году. Закон сохранения массы веществ Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как всеобщий закон природы.

Рис. 1. М. В. Ломоносов.

Но еще до Ломоносова более 20 веков назад древнегреческий ученый Демокрит предполагал, что все живое и неживое состоит из незримых частиц. позже в XVII веке эти догадки подтвердил Р. Бойль. Он проводил эксперименты с металлом и древесиной и выяснил, что вес металла после нагревания увеличился, а вес золы по сравнению с деревом, наоборот, уменьшился.

Независимо от М. В. Ломоносова закон сохранения массы вещества был установлен в 1789 году французским химиком А. Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Взгляды Ломоносова и Лавуазье были подтверждены современной наукой. В 1905 году А. Эйнштейн показал, что между массой тела (m) и его энергией (E) существует связь, выражаемая уравнением:

где c – скорость света в вакууме.

Рис. 2. Альберт Эйнштейн.

Таким образом, закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Суть закона сохранения массы вещества

Закон сохранения массы вещества заключается в следующем: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Рис. 3. Закон сохранения массы вещества.

При написании уравнений химических реакций надо следить за соблюдением этого закона. Число атомов элемента в левой и правой частях реакций должно быть одинаковым, так как атомные частицы в химических превращениях неделимы и никуда не исчезают, а лишь переходят из одного вещества в другое. Сущность химической реакции – разрыв одних связей и образование других связей. Поскольку эти процессы связаны с затратой и получением энергии, то знак равенства в реакциях можно ставить, если учтены энергетические факторы, условия реакции, агрегатные состояния веществ.

Очень часто знак равенства, особенно в неорганических реакциях, ставят и без учета необходимых факторов,производя упрощенную запись. При уравнивании коэффициентов вначале уравнивают число атомов металла, потом неметалла, затем водорода и в конце производят проверку по кислороду.

Что мы узнали?

Закон сохранения массы вещества изучают в школе по химии 8 класса, так как понимание его сути необходимо для правильного составления уравнений реакций. О том, что любая материя на земле состоит из невидимых частиц предположил еще древнегреческий ученый Демокрит, а его более современные последователи Ломоносов, Лавуазье, Эйнштейн доказали это экспериментально.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 162.

К числу основополагающих законов химии относится закон сохранения массы веществ, который был сформулирован в виде общей концепции сохранения материи и движения великим русским ученым М.В.Ломоносовым в 1748 году и подтвержден экспериментально им самим в 1756 году и независимо от него – французским химиком А.-Л.Лавуазье в 1773 г.

Современная формулировка закона:

масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции.

То есть, при химических реакциях количество атомов до и после реакции остается одинаковым, например: H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2 Н 2 О.

Однако практически все реакции сопровождаются выделением или поглощением теплоты. Взаимодействие кислоты и щелочи всегда идет с выделением энергии в окружающую среду (экзотермическая реакция), поэтому приведенное уравнение не полностью отражает процесс. Правильнее будет записать эту реакцию следующим образом

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2 Н 2 О + Q, где Q равно 113,7 кДж.

Нет ли здесь противоречия с законом сохранения массы веществ?

Гораздо позднее, в 1905 г. А.Эйнштейн установил количественную взаимосвязь между массой m и энергией системы Е: Е = m ∙ c 2 , где с – это скорость света в вакууме (около 300000 км/с или 3∙10 10 см/с). Используя уравнение Эйнштейна, определим изменение массы (в граммах) для нашей реакции

Δm = Δ Е/с 2 = (113,7 ∙10 10 г∙см 2 /г)/ (3∙10 10 см/с) 2 = 1,26 ∙10 –9 г.

В настоящее время невозможно регистрировать такие ничтожно малые изменения массы. Поэтому, закон сохранения массы веществ практически справедлив для химических реакций, но теоретически не является строгим – его нельзя применять к процессам, которые сопровождаются выделением очень большого количества энергии, например, к термоядерным реакциям.

Итак, закон сохранения массы и закон сохранения энергии не существуют отдельно друг от друга. В природе проявляется один закон – закон сохранения массы и энергии. Как и другие законы природы, закон сохранения массы веществ имеет большое практическое значение . Так, используя его можно устанавливать количественные соотношения между веществами, претерпевающими химические превращения.



В уравнении химической реакции каждая формула изображает один моль соответствующего вещества. Поэтому, зная молярные массы веществ, участвующих в реакции, можно по уравнению реакции найти соотношение между массами веществ, вступающих в реакцию и образующихся в результате. Если в реакции участвуют вещества в газообразном состоянии, то уравнение реакции позволяет найти их объемные отношения.

Итак, расчеты по химическим уравнениям, т.е. стехиометрические расчеты , основаны на законе сохранения массы веществ. Однако, в реальных условиях из-за неполного протекания процессов или различных потерь, масса получившихся продуктов часто бывает меньше той массы, которая должна быть согласно закону сохранения массы веществ.

Выход продукта реакции (или массовая доля выхода) – это выраженное в процентах отношение массы реально полученного продукта к его массе, которая должна получиться в соответствии с теоретическим расчетом:

η = m (X) / m теор. (X),

где η - выход продукта, %; m (X) – масса продукта Х, полученного в реальном процессе; m теор. (X) – теоретически рассчитанная масса вещества Х.

В тех задачах, где выход продукта не указан, предполагается, что он количественный, т.е. η = 100 %.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ (расчеты по химическим уравнениям)

Задача 1. Железо можно получить, восстанавливая оксид железа (III) алюминием. Определить, сколько алюминия потребуется для получения 140 г железа?

Решение 1. Запишем уравнение реакции: Fe 2 O 3 + 2Al = 2 Fe +Al 2 O 3

Определим количество вещества железа, которое требуется получить:

ν (Fe) = m (Fe)/ М(Fe) = 140 г/ 56 г/моль = 2,5 моль.

Из уравнения реакции видно, что для получения железа количеством вещества 2 моль требуется 2 моль алюминия, т.е.

ν (Al)/ ν (Fe) = 2/2, следовательно ν (Al) = ν (Fe) = 2,5 моль.

Теперь можно определить массу алюминия:

m (Al) = M(Al)∙ ν(Al) = 27 г/моль ∙ 2,5 моль = 67,5 г.

Ответ: для получения 140 г железа потребуется 67,5 г алюминия.

Решение 2. Такие задачи можно решать методом составления пропорций. Из уравнения реакции видно, что для получения железа количеством вещества 2 моль требуется 2 моль алюминия. Запишем:

Для получения (2∙ 56) г = 112 г Fe требуется (2∙ 27) г = 54 г Al

» » » » 140 г Fe » » » » m (Al)

Cоставим пропорцию: 112: 54 = 140: m(Al), отсюда следует

m(Al) = 140 ∙ 54 /112 = 67,5 г

Задача 2. Какой объем водорода выделится (условия нормальные), если в избытке соляной кислоты растворить 10,8 г алюминия?

Решение. Запишем уравнение реакции: 6HCl + 2Al = 2AlCl 3 + 3H 2

Определим количество вещества алюминия, вступившего в реакцию

ν (Al) = m (Al)/ М(Al) = 10,8 г /27 г/моль = 0,4 моль.

Из уравнения реакции следует, что при растворении 2 моль алюминия получается 3 моль водорода Н 2 , т.е. ν (Al)/ ν (Н 2) = 2/3, следовательно,

ν (Н 2) = 3 ν (Al)/2 = 3 ∙0,4 моль/2 = 0,6 моль.

Рассчитаем объем водорода:

V(H 2) = V M ∙ ν (Н 2) = 22.4 л/моль ∙ 0,6 моль = 13,44 л.

Ответ: при растворении 10,8 г Al в соляной кислоте получится 13,44 л водорода.

Задача 3. Какой объем оксида серы (IV) необходимо окислить кислородом, чтобы получить 20 г оксида серы (VI)? Условия нормальные, выход продукта 80 %.

Решение. Запишем уравнение реакции: 2SO 2 + O 2 = 2SO 3

Определим массу оксида серы (VI), который получается при количественном выходе продукта (т.е. теоретически), используя формулу

η = m (X) / m теор. (X),

где η равно 0,8 (или 80 %) по условию задачи.

Отсюда следует: m теор (SO 3) = m (SO 3) / η(SO 3) = 20/0,8 = 25 г.

Какое количество вещества оксида серы (VI) составляют 25 г, определим по формуле

ν (SO 3) = m (SO 3)/ М(SO 3) = 25 г/(32 +3∙16) г/моль = 25/80 = 0,3125 моль.

Из уравнения реакции следует, что

ν (SO 2)/ ν (SO 3) = 2/2, следовательно

ν (SO 2) = ν (SO 3) = 0,3125 моль.

Осталось определить объем оксида серы (IV) при нормальных условиях: V о (SO 2) = V M ∙ ν (SO 2) = 22.4 л/моль ∙0,3125 моль = 7 л.

Ответ: для получения 20 г оксида серы (VI) потребуется 7 л оксида серы (IV).

Задача 4 . К раствору, содержащему 25,5 г нитрата серебра, добавили раствор, содержащий 7,8 г сульфида натрия. Какова масса образующегося осадка?

Решение. Запишем уравнение протекающей реакции:

2AgNO 3 + Na 2 S = Ag 2 S↓ + 2NaNO 3 .

Так как, количество вещества и масса продукта рассчитывается на основе массы и количества вещества, взятого в недостатке, следовательно, сначала необходимо определить количества веществ нитрата серебра и сульфида натрия:

ν (AgNO 3) = m (AgNO 3)/ М(AgNO 3) = 25,5 г / 170 г/моль = 0,15 моль;

ν (Na 2 S) = m (Na 2 S)/ М(Na 2 S) = 7,8 г / 78 г/моль = 0,1 моль.

Согласно уравнению реакции: на каждые 2 моль AgNO 3 требуется 1 моль Na 2 S (т.е. в два раза меньше), значит:

на 0,15 моль AgNO 3 » » » » ν ’ моль Na 2 S.

Тогда ν ’ (Na 2 S) = ½ ∙ 0,15 моль = 0,075 моль,

следовательно, сульфид натрия взят в избытке и расчет необходимо вести по количеству вещества AgNO 3 .

Из уравнения реакции следует:

ν(Ag 2 S) = ν (Na 2 S) = ν (AgNO 3)/2 = 0,15 моль/2 = 0,075 моль.

Теперь можно определить массу сульфида серебра, выпавшего в осадок: m(Ag 2 S) = М(Ag 2 S) ∙ ν(Ag 2 S) = 248 г/моль ∙ 0,075 моль = 18,6 г.

Ответ: масса образовавшегося осадка равна 18,6 г.

Закон кратных отношений

Что происходит, если два элемента могут образовывать между собой несколько химических соединений? В 1803 г. великий английский химик в 1803 г. Дж.Дальтон показал:

● Если два элемента образуют между собой несколько соединений, то массы одного из элементов, приходящиеся на одну и туже массу другого, относятся между собой как небольшие целые числа.

Этот закон подтвердил атомистические представления о структуре материи: раз элементы соединяются в кратных соотношениях, следовательно, химические соединения различаются на целое число атомов. Они представляют собой наименьшее количество элемента, вступающего в соединение. Например, на 1 г азота в его оксидах N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 5 приходится 0,57; 1,14; 1,71; 2,28; и 2,85 г кислорода, что соответствует отношению 1:2:3:4:5.

Однако в случае соединений переменного состава закон кратных отношений неприменим.

Закон постоянства состава

Этот закон был открыт французским ученым Ж.Прустом в 1801 г.:

● Всякое химически чистое индивидуальное вещество имеет всегда один и тот же количественный состав независимо от способа его получения.

Так, например, сернистый газ можно получить сжиганием серы или действием кислот на сульфиты, или же действием концентрированной серной кислоты на медь. В любом случае молекула сернистого газа будет состоять из одного атома серы и двух атомов кислорода – SO 2 , т.е. массовое соотношение серы и кислорода всегда равно 1:1.

Закон Пруста имел для химии фундаментальное значение – он привел к мысли о существовании молекул и подтвердил неделимость атомов. Вещества постоянного состава получили название «дальтониды» в честь Дальтона.

Закон постоянства состава также справедлив только для веществ молекулярного строения. В настоящее время известно большое число соединений, не подчиняющихся закону постоянства состава и закону кратных отношений; их называют соединениями переменного состава (чаще всего это - оксиды, сульфиды, нитриды гидриды и т.д.). В таких соединениях на единицу массы одного элемента может приходиться различная масса другого элемента. Например, состав оксидов титана (II) и (IV) в зависимости от условий синтеза может быть таким: TiO 0.8–1.2 и TiO 1.9–2.0 .

Соединения переменного состава получаются за счет дефектов в кристаллической решетке в процессе кристаллизации вещества. Благодаря наличию пустот или избыточных атомов в кристаллической решетке некоторые материалы проявляют много новых интересных свойств, например, полупроводниковые свойства.

Закон эквивалентов

Изучая соотношение масс кислот и оснований, взаимодействующих между собой с образованием солей, И.Рихтер в 1792 – 1800 гг. пришел к выводу, что массы одного вещества, реагирующие с одной и той же массой другого вещества, относятся между собой как простые целые числа. Позднее Д.Дальтон ввел понятие «соединительного веса», которое сейчас заменено понятием эквивалента.

● Вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам.

Для решения некоторых задач пользуются другой формулировкой этого закона:

● Массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентным массам (объемам):

m A /m B = Э А /Э В,

где m A и m B – массы реагирующих веществ А и В,

Э А и Э В – эквивалентные массы этих веществ.

ГАЗОВЫЕ ЗАКОНЫ

· Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость

Закон сохранения массы - закон физики , согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Ранее Эмпедокла «принцип сохранения» применялся представителями Милетской школы для формулировки теоретических представлений о первовеществе, основе всего сущего.

Позже аналогичный тезис высказывали Демокрит , Аристотель и Эпикур (в пересказе Лукреция Кара). Средневековые учёные также не высказывали никаких сомнений в истинности этого закона. В 1630 году Жан Рэ (Jean Rey, 1583-1645), доктор из Перигора, писал Мерсенну :

Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.

Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.

В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Иммануил Кант объявил этот закон постулатом естествознания (1786). Лавуазье в «Начальном учебнике химии» (), приводит точную количественную формулировку закона сохранения массы вещества, однако не объявляет его каким-то новым и важным законом, а просто упоминает мимоходом как о хорошо известном и давно установленном факте. Для химических реакций Лавуазье сформулировал закон так :

Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции [химической реакции] имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано всё искусство делать опыты в химии.

Другими словами, сохраняется масса закрытой физической системы , в которой происходит химическая реакция, а сумма масс всех веществ, вступивших в эту реакцию, равна сумме масс всех продуктов реакции (то есть тоже сохраняется). Масса считается аддитивной.

Современное состояние

В XX веке обнаружились два новых свойства массы.

(M1 ) Масса физического объекта зависит от его внутренней энергии (см. Эквивалентность массы и энергии). При поглощении внешней энергии масса растёт, при потере - уменьшается. Отсюда следует, что масса сохраняется только в изолированной системе , то есть при отсутствии обмена энергией с внешней средой. Особенно ощутимо изменение массы при ядерных реакциях . Но даже при химических реакциях, которые сопровождаются выделением (или поглощением) тепла, масса не сохраняется, хотя в этом случае дефект массы ничтожен. Академик Л. Б. Окунь пишет:

Чтобы подчеркнуть, что масса тела меняется всегда, когда меняется его внутренняя энергия, рассмотрим два обыденных примера:
1) при нагревании железного утюга на 200° его масса возрастает на величину ;
2) при полном превращении некоторого количества льда в воду .

(M2 ) Масса не является аддитивной величиной: масса системы не равна сумме масс её составляющих. Примеры неаддитивности:

  • Электрон и позитрон , каждый из которых обладает массой, могут аннигилировать в фотоны , не имеющие массы поодиночке, а обладающие ею только как система.
  • Масса дейтрона , состоящего из одного протона и одного нейтрона , не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц.
  • При термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия.
  • Особенно яркий пример: масса протона (≈938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Таким образом, при физических процессах, которые сопровождаются распадом или синтезом физических структур, не сохраняется сумма масс составляющих (компонентов) системы, но сохраняется общая масса этой (изолированной) системы:

  • Масса системы получившихся при аннигиляции фотонов равна массе системы, состоящей из аннигилирующих электрона и позитрона.
  • Масса системы, состоящей из дейтрона (с учётом энергии связи), равна массе системы, состоящей из одного протона и одного нейтрона отдельно.
  • Масса системы, состоящей из получившегося при термоядерных реакциях гелия, с учётом выделенной энергии, равна массе водорода.

Сказанное означает, что в современной физике закон сохранения массы тесно связан с законом сохранения энергии и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Более детально

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной (масса системы не равна - вообще говоря - сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина :

где - энергия , - импульс , - скорость света . И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс - аддитивны).

  • Можно попутно заметить также, что вектор импульса-энергии системы - это 4-вектор , то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца , поскольку так преобразуются его слагаемые - 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике, то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отччета, в которой ее измеряют или рассчитывают.

Кроме того, заметим, что - универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось , и тогда упомянутая формула будет менее загромождена:

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы - случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 b 2 с противоположными импульсами: . Масса каждого фотона, как известно, равна нулю, следовательно можно записать:

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав ее импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях) :

.

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

Ну и отсюда масса системы:

(импульсы уничтожились, а энергии сложились - они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами , и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отстчета покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчета, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

Полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого - фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на .

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Допплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию , равную (если ), что означает, что ящик ведет себя как классическое тело массы . Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется суммой масс частиц, находящихся в ящике).

Примечания

Литература

  • Джеммер М. Понятие массы в классической и современной физике . - М.: Прогресс, 1967. (Переиздание: Едиториал УРСС, 2003, ISBN 5-354-00363-6)
  • Окунь Л. Б. Понятие массы (Масса, энергия, относительность). Успехи физических наук, № 158 (1989).
  • Спасский Б. И. История физики . - М .: Высшая школа, 1977.
    • Том 1: часть 1-я часть 2-я
    • Том 2: часть 1-я часть 2-я

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон сохранения массы" в других словарях:

    ЗАКОН СОХРАНЕНИЯ МАССЫ - фундаментальный закон нерелятивистской ньютоновской механики, согласно которому масса вещества, поступающего в замкнутую систему, либо накапливается в ней, либо покидает ее, т. е. масса поступающего в систему вещества минус масса выходящего из… … Экологический словарь