Физики из Ноттингемского университета провели ряд экспериментов по определению формы водяных капель, подвешенных в пространстве с помощью диамагнитной левитации. Было показано, что при определенных условиях капли в равновесии могут принимать не только шарообразную или овальную форму, но также треугольную, четырех- и даже пятиугольную. Результаты исследований могут быть использованы как для объяснения структур астрономических объектов (черные дыры, пояс Койпера), так и в описании быстровращающихся атомных ядер.

То, что капля жидкости в отсутствие гравитации имеет форму шара, кажется очевидным, но подтвердить этот факт экспериментально смог лишь в 1863 году бельгийский физик Жозеф Плато (Joseph Plateau), давно ослепший к тому времени, после того как он однажды 25 секунд не отрываясь смотрел на полуденное солнце. Для доказательства он поместил каплю оливкового масла в водно-спиртовую смесь, имевшую такую же плотность, как и масло. Уравновешивая силу тяжести, действующую на каплю, архимедовой (выталкивающей) силой, ученый добивался состояния невесомости капли. В результате таких манипуляций капля принимала сферическую форму. Бельгийский ученый также провел эксперименты по вращению капли и наблюдению за происходящими с ней в результате этого метаморфозами. Плато удалось установить, что, по мере возрастания скорости вращения оливкового масла, капля меняла свою форму с шарообразной на овальную, а далее трансформировалась в двудольную структуру, напоминающую сильно вытянутый овал. И наконец, при очень большой скорости вращения капля становилась тором. Схематически изменение формы капли с увеличением скорости вращения жидкости в ней изображено на рис. 1.

К сожалению, опыты Плато не были совершенными по одной простой причине. Среда, которая окружала исследуемый объект в его опытах, за счет сил вязкости оказывает нежелательное дополнительное воздействие на форму капли. А потому результаты исследований бельгийского физика носили лишь качественный характер. И на протяжении 150 лет с момента экспериментов бельгийца главным препятствием на пути к количественному описанию процесса вращения и трансформации формы капли оставалось влияние сил вязкого трения.

Сравнительно недавно эксперименты Плато были повторены в космическом корабле с капелькой кремниевого масла. Но подобные эксперименты, как несложно понять, удовольствие недешевое — не запускать же ради этого специальный космический корабль. А программы научных исследований в космосе и без того перенасыщены, так что там не всегда находится время для исследования капель. Значит, необходимо подобрать такие условия эксперимента, чтобы одновременно убрать как действие на исследуемый объект гравитации, так и эффекты вязкого окружения (в опытах Плато, например, это трение между каплей оливкового масла и окружающей ее смесью спирта и воды).

После того как задача об уничтожении силы тяжести была успешно решена (проблема окружающей среды при этом решении уже отпадает — вязкое трение со стороны воздуха ничтожно), необходимо было придумать механизм, который заставил бы жидкость внутри подвешенных водяных капель вращаться так же, как в опытах Плато. Решение этой задачи тоже оказалось «магнитным». Ученые создали «жидкий электрический мотор»: в каплю вставлялось два тонких золотых электрода, один из которых совпадал с осью симметрии капли (рис. 2а); через электроды пропускался ток, направление протекания которого было перпендикулярно силовым линиям внешнего магнитного поля.

В итоге возникающий момент силы Лоренца заставлял жидкость внутри капли вращаться, и частота этого вращения зависела от силы тока, протекающего между электродами (рис. 2b). Интересной дополнительной особенностью «жидкого электрического мотора» является способность неосевого (то есть несовпадающего с осью симметрии капли) электрода создавать на капле поверхностные волны небольшой амплитуды. Для чего это было необходимо, станет ясно дальше.

С помощью изобретенной авторами статьи техники удалось наблюдать различные формы капель. В частности, при вращении жидкости внутри таких объектов, согласно теоретическим предсказаниям, существует возможность наблюдать их переход из двудольной формы в треугольную (трехдольную), причем последняя структура, как предсказывает та же теория, должна быть неустойчива. На примере водяной капли объемом 1,5 мл (что соответствует диаметру 14 мм), у которой с помощью поверхностно-активного вещества коэффициент поверхностного натяжения уменьшен вдвое, английские ученые впервые показали, что, вопреки теоретическим предсказаниям, можно добиться устойчивости треугольной формы. Стабилизация достигалась за счет комбинации вращения капли и генерирования на ней поверхностных волн. Таким образом, поверхностные волны играли роль своего рода стабилизатора треугольной формы водяной капли.

Как оказалось, возбуждение на капле поверхностных волн вкупе с ее вращением позволяет получить значительное многообразие форм водяных капель, о которых Плато, возможно, даже и не догадывался.

На рис. 3 приведена временна я эволюция 1,5 мл водяной капли с поверхностно-активным веществом в своем составе при изменении частоты вращения (rps — количество оборотов в секунду). Несколько пояснений к графику. При малой частоте вращения и отсутствии поверхностных волн на капле ее форма напоминает сплюснутый сфероид (oblate spheroid) — проще говоря, форма капли овальная. После того как с помощью тока были активизированы поверхностные волны, а скорость вращения жидкости внутри капли продолжала увеличиваться, ее форма трансформировалась в сильно вытянутый овал — иными словами, стала двудольной (красная область на графике и снимок M1b под графиком). Желтый участок графика соответствует области, когда капля начинает вращаться вокруг своей оси как твердое тело (как единое целое) и когда одновременно с этим по капле «гуляют» поверхностные волны. В итоге капля выглядит так, как это показано на фотографии M1c — ученые такую форму капли назвали двудольная статическая + вращающаяся.

Дальнейшее увеличение силы тока и скорости вращения превращает каплю из овальной (двудольной) в треугольную (при этом динамическое поведение капли не твердотельное) — зеленая область на графике и фото М2. Далее, когда поверхностные волны стабилизировали такую структуру водяной капли, увеличивая скорость вращения можно добиться явления, при котором капля начинает себя вести подобно твердому телу — вращается как единое целое. На графике эта область отражена синим цветом (см. также фото М4). Обращает на себя внимание существование переходной области, когда капля только начинает себя вести как твердое тело (см. фото М3). На графике такая область соответствует градации зеленого и синего цветов.

Несколько богаче в эволюционном отношении проявляет себя капля воды объемом 3 мл уже без добавок поверхностно-активных веществ (рис. 4). До некоторого времени поведение большей капли ничем качественно не отличается от рассмотренного выше. Однако, как это видно из рис. 4, на пятой минуте эксперимента при монотонно возрастающей угловой скорости вращения жидкости есть возможность наблюдать четырех- и даже пятиугольную форму капли (голубая и фиолетовые области на графике и фото М10 и М11), которая, однако, не ведет себя как твердое тело. Справедливости ради отметим, что такая форма не является устойчивой и со временем вырождается в двудольную (сильно вытянутый овал, фото М12), поведение которой соответствует вращающемуся твердому телу.

Эксперименты с каплями воды, по мнению ученых, представляют не только академический интерес. Поскольку стабилизация формы капли происходила вследствие сложного взаимодействия ее вращения и поверхностных волн на ней, то результаты опытов могут быть использованы в описании схожих физических явлений — как значительно большего (астрономического), так и меньшего (ядерного) масштаба. Например, при изучении формы объектов пояса Койпера, горизонта событий черных дыр или при исследовании форм быстровращающихся атомных ядер. (Кстати, заметим, что идея использовать «капельный» подход в описании характеристик атомных ядер уже довольно стара — достаточно вспомнить о полуэкспериментальной формуле Вайцзеккера , которая описывает энергию связи атомных ядер; правда, само это выражение на современном этапе развития науки уже не используется.)

Источник . R. J. A. Hill, L. Eaves. Nonaxisymmetric Shapes of a Magnetically Levitated and SpinningWater Droplet (полный текст — PDF, 3,45 Мб , дополнительные материалы к статье — PDF, 287 Кб) // Physical Review Letters , 101, 234501 (2008).

См. также:
Vitor Cardoso. The many shapes of spinning drops (комментарий к обсуждаемой статье).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

на тему: Физика жидкости в условиях невесомости

Введение

О роли силы поверхностного натяжения в условиях невесомости.

В обычных земных условиях, на любую жидкость, налитую в сосуд действует несколько сил. В результате воздействия силы тяжести, она постоянно находится на дне сосуда, в который налита. Так же имеют место силы поверхностного натяжения жидкости, которые постоянно стремятся уменьшить площадь поверхности жидкости.

Поверхностным натяжением называется сила, испытываемая молекулами жидкости на поверхности (сильнее всего на границе газ - жидкость) и направленная в глубину объема жидкости. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку.

Именно благодаря этой силе даже игла может плавать на поверхности воды. Именно благодаря силе поверхностного натяжения, струя воды "слипается" в цилиндр. В земных условиях силы поверхностного натяжения малы по сравнению и действие этих сил не всегда заметно.

Теперь, представим себе, что мы находимся в кабине космического корабля, в невесомости. Все объекты плавают по кабине нашего космического корабля. Мы знаем, что сила тяжести продолжает воздействовать на все объекты вокруг, ведь полёт космического корабля - это постоянное падение под её воздействием. И тела внутри корабля и сам корабль падают с одинаковым ускорением, поэтому тела не воздействуют на свою опору, то есть, не имеют веса. Действие силы тяжести как будто бы не проявляется. невесомость жидкость капиллярность кипение

И тут, главную роль начинают играть силы поверхностного натяжения.

1. Форма поверхности жидкости в условиях невесомости

Если выплеснуть жидкость из сосуда, она не польётся на пол (невесомость же), а будет плавать по кабине корабля. Не просто плавать, а плавать, собравшись в шар и, чтобы его разрушить, нужны немалые усилия.

Почему так происходит? Всё дело в том, что силы поверхностного натяжения всегда стремятся уменьшить площадь поверхности жидкости. А шар примечателен тем, что из всех геометрических тел при равном объёме он обладает минимальной площадью поверхности. также форма шара - это уровень низшей потенциальной энергии, все тела "рвутся" к такому состоянию. Сила поверхностного натяжения жидкости "стягивает" ее в такую форму. В условиях невесомости любой объем жидкости может принять строго сферическую форму!!! В земных условиях шарообразную форму имеют микроскопические капли. Крупные капли могут принять форму шара только в том случае, когда плотности жидкости и окружающей ее среды одинаковы. В стакан с водой с помощью шприца будем очень аккуратно и осторожно приливать спирт, чтобы жидкости не перемешались. Затем в спирт вольем чайную ложечку растительного масла. И вот словно в кабине космического корабля масло собралось в шарики! Они как бы парят на границе раздела масла и воды.

Впервые подобный опыт в 1863 году поставил бельгийский физик Жозеф Плато. Бельгийский ученый также провел эксперименты по вращению капли и наблюдению за происходящими с ней в результате этого метаморфозами. Плато удалось установить, что, по мере возрастания скорости вращения, капля меняла свою форму с шарообразной на овальную. И, наконец, при очень большой скорости вращения капля становилась тором.

Физики из Ноттингемского университета провели ряд экспериментов по определению формы водяных капель, подвешенных в пространстве с помощью диамагнитной левитации. Было показано, что при определенных условиях капли в равновесии могут принимать не только шарообразную или овальную форму, но также треугольную, четырех- и даже пятиугольную. Результаты исследований могут быть использованы для объяснения структур астрономических объектов (черные дыры, пояс Койпера и других).

2. Смачиваемость и капиллярность в невесомости

А как поведет себя капля жидкости на твердой поверхности? Наверно, каждый из вас замечал, что после дождя на окне видны капли. С точки зрения физики граница, по которой капля соприкасается с поверхностью твердого тела, называется поверхностью раздела фаз - жидкой и твердой. Угол между поверхностью капли и твердой поверхностью называется углом смачивания. Если этот угол меньше 90? и капля растекается по поверхности, то говорят, что жидкость хорошо смачивает поверхность. Если этот угол больше 90?, то капля стягивается в сплющенный, под давлением собственного веса, водяной шарик, не смачивая поверхность твердого тела.

В земных условиях вода, смачивая поверхность обезжиренного стекла, растекается по всей его поверхности. Это происходит потому, что силы притяжения между молекулами воды оказываются меньше, чем силы притяжения между молекулами воды и стекла.

В невесомости водяной шарик целиком не растекается по стеклу. Силы поверхностного натяжения стараются сохранить форму капли, не давая ей стекать со стеклянной пластинки. Из-за того, что вода не растекается, космонавты могут мыть голову, не снимая одежды, правда при этом воду и шампунь им приходится втирать в волосы с помощью тампона.

Силы поверхностного натяжения заставляют смачивающую жидкость подниматься по узким трубочкам - капиллярам, но для этого диаметр трубочки должен быть мал. Чем тоньше трубочка, тем на большую высоту поднимется жидкость по капилляру. А вот в условиях невесомости можно заставить жидкость за счет сил поверхностного натяжения подниматься туда, где просто уже - такого на Земле не увидишь никогда!

Известно, что в земных условиях, жирная поверхность, например поверхность пластилина, плохо смачивается, и капли воды не задерживаются на его поверхности, ведь силы притяжения между молекулами воды в этом случае больше, чем между молекулами воды и пластилина. Но в невесомости достаточно даже небольшого эффекта смачивания для того, чтобы водяной и пластилиновый шарик сцепились, а при большом желании и упорстве можно постараться шарик из пластилина даже закутать в водяную одежду. Как мы видим, малые по сравнению с силой тяжести силы поверхностного натяжения в условиях невесомости оказываются очень значимыми.

3. Как пить в космосе

Отсутствие в жидкости сил давления, зависящих от глубины погружения, приводит к тому, что в невесомости жидкость в сообщающихся сосудах не должна находиться на одинаковых уровнях, поэтому жидкость не будет выливаться из носика чайника, из горлышка бутылки и т.д. Жидкость из сосудов приходится либо выдавливать, либо выталкивать при помощи поршня.

Когда космонавта Александра Сереброва спросили о физических явлениях, связанных с невесомостью, он рассказал о необычности того, к чему каждый из нас привык в повседневной жизни. На Земле, чтобы налить воду в бутылку, подставляют горлышко под струю. В космосе в условиях невесомости жидкость не будет накапливаться на дне сосуда, она будет «плавать» внутри бутылки в виде шаровых капель разного размера. Заполнение сосуда водой вызовет вытеснение из него воздуха, но вместе с воздухом из сосуда будут «выплывать» взвешенные в нем капли воды. Если же струю с маленькой скоростью направить сразу на стенку сосуда, то вода, смачивая стенку, будет прилипать к ней. Взвешенных капель не будет (по крайней мере, до тех пор, пока сосуд не встряхивают). Чтобы достать воду, бутылку необходимо либо встряхивать, либо раскрутить так, чтобы жидкость прижалась к ее стенкам, либо использовать шприц.

Александр Серебров применил свой способ, помещая внутрь сосуда длинный и узкий предмет, например, черенок ложки, к которому капли прилипают за счет сил поверхностного натяжения. Жидкость «расползается» по черенку и подходит к краю горловины сосуда.

Капилярные эффекты позволяют здесь жидкости течь, скажем, вдоль линии сближения двух твердых поверхностей, сходящихся под достаточно узким углом. На Земле это явление проявляется слишком слабо, и даже исследовать его нелегко, однако в космических полетах может пригодиться. Пользуясь полученными в экспериментах данными, Вайслогелю с коллегами удалось разработать и запатентовать несколько устройств для управления жидкостями в условиях микрогравитации -- теплообменный конденсатор, сепаратор и кофейную чашку. С последним изобретением Вайслогелю помогли астронавт Доналд Петтит и два математика, работавших над теоретической частью исследований. «Космическая чашка» работает на базе тех же капиллярных явлений: вместо керамического цилиндра она представляет собой пластиковый лист, сложенный так, что концы его сходятся под острым углом. Это создает линию, где напиток удерживается и вдоль которой двигается прямо в рот.

Главное отличие изобретения - его форма. Так, в разрезе оно напоминает каплю.

Сообщается, что именно благодаря наличию у этой чашки острого ребра из нее можно пить в невесомости.

По словам создателя, похожая технология используется при создании топливных баков для космических аппаратов, летающих в невесомости.

В основе работы чашки лежит смачивание. На Земле оно отвечает за промокание, растекание жидкости по поверхности, а также за ее движение по капиллярам.

В невесомости этот эффект позволяет кофе оставаться в чашке, а не улетать в свободный полет при малейшем шевелении сосуда, но лишь при правильном подборе материала чашки и количества жидкости. Однако при этом кофе невозможно пить, поскольку если в обычных условиях при наклоне сосуда жидкость начинает течь под воздействием силы тяжести, то в невесомости этого не происходит.

Именно для решения этой проблемы у чашки имеется угол. Как показывает теория, если его величина меньше некоторого значения, которое зависит от жидкости и материала, то в результате смачивания жидкость сама "поползет" по желобу вверх к потребителю.

4. Кипение воды в невесомости

А вот будет ли действовать в невесомости выталкивающая или Архимедова сила? Вспомним, что ее происхождение связано с разностью весовых давлений жидкости или газа на верхнюю и нижнюю поверхности тела. В результате того, что давление снизу оказывается больше, возникает выталкивающая сила, направленная против силы тяготения и равная по величине весу вытесненной жидкости или газа. Но в космосе нет веса, а значит, и нет выталкивающей силы, она в невесомости не действует. Это сказывается на процессах в жидкости, содержащей пузырьки пара или газа.

Еще несколько лет назад никто не знал, что представляет собой процесс кипения в космосе. Конечно, физики ломали голову, анализируя сложный характер кипения здесь, на Земле. Про космос же только предполагали, что зрелище будет еще более захватывающее.

В начале 90-х годов группа ученых из университета Мичигана и НАСА решила заняться изучением этого вопроса.

Несмотря на всю зрелищность экспериментов, учеными двигало не просто любопытство. Поняв, как кипит жидкость в космосе, можно создать более совершенную систему охлаждения для космического корабля. Эти знания можно применить и для разработки электрогенераторов, использующих их солнечный свет для подогрева воды до состояния пара, которая затем бы вращала турбину, вырабатывая электричество. Это исследование может найти применение и на Земле - полученные данные можно использовать для лучшего изучения феномена кипения, что позволит усовершенствовать и земные электростанции.

Вообще-то на орбите кипение представляет собой более простой процесс, чем на Земле. Нагретая жидкость не поднимается, а остается рядом с нагревающей поверхностью и нагревается дальше. Те области жидкости, которые находятся на некотором расстоянии от источника тепла, остаются относительно холодными. Поскольку нагревается меньший объем воды, процесс происходит быстрее. По мере формирования пузырьков пара, они не поднимаются на поверхность, а объединяются в гигантский пузырь, который колеблется в жидкости.

В зависимости от температуры пузырь пара или оказывается в центре жидкости, или остается "прикрепленным" к источнику нагревания. Когда пузырь остается у источника тепла, он эффективно изолирует его от окружающей жидкости, вызывая дальнейшее повышение температуры. Сегодня исследователи продолжают расширять знания, основываясь на данных этих экспериментов. Лучше познав физику кипящей жидкости, инженеры смогут улучшить системы охлаждения и электроснабжения, которые очень пригодятся людям в будущем - как в космосе, так и на Земле.

Заключение

Краткое сравнение свойств жидкости на Земле и в невесомости.

Итак, жидкости ведут себя в невесомости совсем не так, как на Земле.

· На Земле: поведение жидкостей в большей степени определяется действием силы тяжести. В космосе: жидкостями управляет сила поверхностного натяжения.

· На Земле: можно легко разделить капельку жидкости шарообразной формы. В космосе: для этого придется приложить немалые усилия.

· На Земле: несмачиваемые жидкости не смачивают поверхность. В космосе: достаточно небольшого прикосновения несмачиваемой жидкости для того, чтобы смочить поверхность

· На Земле: если встряхнуть бутылку с какой-либо жидкостью, то она (жидкость) вернется в исходное состояние. В космосе: водяные шарики могут вести себя как "упругие мячики", неоднократно отскакивая от той же жидкости, из которой они изготовлены.

· Из-за отсутствия в невесомости Архимедовой силы и естественной конвекции по-другому кипят жидкости, намного медленнее замерзает капля воды.

Размещено на Allbest.ru

...

Подобные документы

    Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.

    реферат , добавлен 23.04.2009

    Исследование зависимости поверхностного натяжения жидкости от температуры, природы граничащей среды и растворенных в жидкости примесей. Повышение давления газов над жидкими углеводородами и топливом. Расчет поверхностного натяжения системы "жидкость-пар".

    реферат , добавлен 31.03.2015

    Сущность и характерные особенности поверхностного натяжения жидкости. Теоретическое обоснование различных методов измерения коэффициента поверхностного натяжения по методу отрыва капель. Описание устройства, принцип действия и назначение сталагмометра.

    реферат , добавлен 06.03.2010

    История возникновения баллистического движения. Баллистика как наука. История открытия закона всемирного тяготения. Применение баллистики на практике. Траектория полета снаряда, баллистической ракеты. Перегрузки, испытываемые космонавтами в невесомости.

    реферат , добавлен 27.05.2010

    Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа , добавлен 07.12.2010

    Понятие кипения как интенсивного парообразования при нагревании жидкости. Поглощение теплоты при кипении, расчет ее количества, необходимого для перевода жидкости в пар. Удельная теплота парообразования. Непрерывное образование и рост пузырьков пара.

    презентация , добавлен 26.11.2012

    Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа , добавлен 01.12.2013

    Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа , добавлен 26.10.2011

    Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.

    презентация , добавлен 28.12.2013

    Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

Мы привыкли к мысли о том, что капля имеет форму шара. На самом деле она почти никогда не является шаром, хотя эта форма обеспечивает наименьший объем.

Капля, покоящаяся на горизонтальной поверхности сплющена. Сложную форму имеет падающая в воздухе капля. И только капля, находящаяся в состоянии невесомости принимает сферическую форму.

В Большой Советской энциклопедии приведены мгновенные фотографии падающих капель дождя. В частности, капля диаметром 6 мм имеет форму, близкую к форме шляпки гриба; капли меньшего диаметра имеют форму, близкую к шару.

Образование капли может быть описано тремя характерными состояниями. Состояние А соответствует началу образования капли: поверхность жидкости у конца трубки горизонтальна, радиус её кривизны очень велик, силы поверхностного натяжения направлены перпендикулярно стенке трубки и не препятствуют вытеканию жидкости. Через короткое время капля переходит в состояние Б, которое характеризуется наибольшей лапласовской силой, которая замедляет скорость образования капли, а следовательно, и скорость вытекания. В этом состоянии радиус кривизны поверхности r. Затем объём капли увеличивается, она переходит в состояние В, которое характеризует основной этап формирования капли: лапласовская сила велика, но меньше, чем в состоянии Б, и в дальнейшем ещё убывает с увеличением радиуса капли; время накопления необходимой для отрыва массы велико по сравнению со временем перехода из состояния А в состояние Б, скорость вытекания ещё уменьшается.

Радиус капли

Падение капли дождя, в силу относительности механического движения, можно, в первом приближении, заменить парением капли в восходящем потоке воздуха.

Мы повторили эксперимент, описанный в журнале. Капли помещали в воздушную струю посредством медицинского шприца. Для этого конец иглы помещали в струю воздуха, и, медленно выдавливая из шприца воду, получали капли различного объема. Капли, за счет смачивания, могут некоторое время удерживаться на игле. В этот момент уже можно хорошо пронаблюдать форму капель. Спустя некоторое время капля срывается с кончика иглы и на несколько секунд зависает в воздухе. Это время оказывается достаточным для того, чтобы рассмотреть формы капель различного размера или сфотографировать их.

В ходе проведенного исследования выяснилось, что капли малого диаметра действительно имеют форму, близкую к шару, а капли большего диаметра - форму, напоминающую шляпку гриба.

Наблюдение распада капли в кольцо и взаимодействия колец

Мы решили провести наблюдение распада капли в кольцо, чтобы удостовериться в справедливости представленных авторами данных о поведении капли чернил на поверхности и внутри воды. При проведении эксперимента нами зафиксировано, что более плотная жидкость стремится вниз по законам, которые описываются неустойчивостью Рэлея-Тейлора, с образованием вихрей.

Для этого мы использовали прозрачный стеклянный сосуд, который наполняли водой. Подбирали капилляры различных диаметров и, получали тем самым, капли различных радиусов.

Характер поведения чернильной капли зависит от нескольких параметров: если жидкость имеет высокую плотность, например, раствор поваренной соли, или капля падает с большой высоты и ударяется о поверхность жидкости с большой скоростью, то она разбивается на части и глубоко в жидкость не проникает. Но если плотность жидкости немного меньше, чем у чернил, и капля падает с высоты в несколько сантиметров, то с ней происходят интересные превращения.

Если осторожно поднести каплю чернил к самой поверхности и коснуться ее, то капля будет моментально втянута в воду и начнет с большой скоростью двигаться вниз. Эту скорость капля приобретает под действием взаимного притяжения молекул жидкости. Возникающие при этом силы называются силами поверхностного натяжения потому, что они всегда стремятся уменьшить свободную поверхность жидкости, втягивая ее внутрь и выравнивая любую неровность на ней.

Сначала чернильная капля с большой скоростью погружается в воду, но затем движение ее замедляется. Причиной такого движения является архимедова сила, почти уравновешивающая силу тяжести, и сила трения между каплей и неподвижной водой. Поскольку сила трения действует лишь на внешнюю поверхность капли, то, пройдя несколько сантиметров, капля превращается во вращающееся кольцо.

Механизм образования вихревого кольца довольно прост: боковая поверхность капли тормозится о неподвижную воду и начинает отставать от внутренней части. Место провалившейся серединки занимает чистая вода.

Кольцо недолго остается идеально круглым: его вращение замедляется, и на нем появляются вздутия и впадины. Это явление называется неустойчивостью Рэлея - Тейлора, которое заключается в том, что слой тяжелой жидкости, лежащий на слое более легкой жидкости, может пребывать в равновесии, но равновесие это будет неустойчивым. Стоит поверхности раздела жидкостей немного искривиться, как тяжелая жидкость устремится во впадины, а легкая начнет всплывать, усиливая вздутия. Это совершенно естественно: жидкости стремятся занять положение устойчивого равновесия, когда легкая находится наверху, а тяжелая - внизу.

Движение струи в неподвижной жидкости во многом напоминает движение отдельной капли: под действием вязких сил, на конце струи опять - таки образуется вихревое кольцо, которое через несколько секунд под - действием рэлей-тейлоровской неустойчивости само породит 2-3 струи. Такой процесс «почкования» повторяется несколько раз, пока чернила не достигнут дна банки, оставляя за собой след.

При изучении взаимодействия вихревых колец, в тот момент, когда они оказываются на одной высоте, то начинают взаимодействовать друг с другом. Возможны три случая.

Первый случай – второе кольцо обгоняет первое, не задевая его. При этом происходит следующее. Во-первых, потоки воды от обоих колец как бы отталкивают кольца друг от друга. Во-вторых, обнаруживается переток чернил с первого кольца на второе: водяные потоки второго кольца более интенсивны, они и увлекают чернила за собой. Иногда часть этих чернил проходит через второе кольцо, что влечет за собой образование нового небольшого кольца. Затем кольца начинают делиться, дальше ничего интересного нам заметить не удалось.

Второй случай – второе кольцо при обгоне задевает первое. В результате более интенсивные потоки второго кольца разрушают первое. Как правило, из оставшегося от первого кольца сгустка чернил образуются новые маленькие вихри.

Третий случай - кольца испытывают центральное соударение. При этом второе кольцо проходит через первое и уменьшается в размерах, а первое, наоборот, расширяется. Как и в предыдущих случаях, это происходит за счет взаимного действия водяных потоков одного кольца на другое. В дальнейшем кольца начинают делиться.

Картинка в посте ПОЧЕМУ НА ЭКВАТОРЕ КАПЕЛЬКА ВОДЫ ИДЕАЛЬНО ШАРООБРАЗНОЙ ФОРМЫ? была отсюда - очень интересной научной статьи о том, какую форму принимает вода в невесомости...

Рис. 1 . Диаграмма стабильности форм капель. По вертикальной оси (оси ординат) отложена безразмерная угловая скорость вращения, по горизонтальной оси (оси абсцисс) — безразмерный момент импульса вращения жидкости капли. . Рис. с сайта physics.aps.org

ТОР - форма воды...

Физики из Ноттингемского университета провели ряд экспериментов по определению формы водяных капель, подвешенных в пространстве с помощью диамагнитной левитации . Было показано, что при определенных условиях капли в равновесии могут принимать не только шарообразную или овальную форму, но также треугольную, четырех- и даже пятиугольную . Результаты исследований могут быть использованы как для объяснения структур астрономических объектов (черные дыры, пояс Койпера), так и в описании быстровращающихся атомных ядер.

То, что капля жидкости в отсутствие гравитации имеет форму шара , кажется очевидным, но подтвердить этот факт экспериментально смог лишь в 1863 году бельгийский физик Жозеф Плато (Joseph Plateau), давно ослепший к тому времени, после того как он однажды 25 секунд не отрываясь смотрел на полуденное солнце. Для доказательства он поместил каплю оливкового масла в водно-спиртовую смесь, имевшую такую же плотность, как и масло. Уравновешивая силу тяжести, действующую на каплю, архимедовой (выталкивающей) силой, ученый добивался состояния невесомости капли. В результате таких манипуляций капля принимала сферическую форму. Бельгийский ученый также провел эксперименты по вращению капли и наблюдению за происходящими с ней в результате этого метаморфозами. Плато удалось установить, что, по мере возрастания скорости вращения оливкового масла, капля меняла свою форму с шарообразной на овальную, а далее трансформировалась в двудольную структуру, напоминающую сильно вытянутый овал. И наконец, при очень большой скорости вращения капля становилась тором . Схематически изменение формы капли с увеличением скорости вращения жидкости в ней изображено на рис. 1.

Рис. 1 . Диаграмма стабильности форм капель. По вертикальной оси (оси ординат) отложена безразмерная угловая скорость вращения, по горизонтальной оси (оси абсцисс) — безразмерный момент импульса вращения жидкости капли. Сплошная линия на диаграмме соответствует устойчивой форме капли, пунктирная — нестабильной структуре . Рис. с сайта physics.aps.org

К сожалению, опыты Плато не были совершенными по одной простой причине. Среда, которая окружала исследуемый объект в его опытах, за счет сил вязкости оказывает нежелательное дополнительное воздействие на форму капли. А потому результаты исследований бельгийского физика носили лишь качественный характер. И на протяжении 150 лет с момента экспериментов бельгийца главным препятствием на пути к количественному описанию процесса вращения и трансформации формы капли оставалось влияние сил вязкого трения.

Сравнительно недавно эксперименты Плато были повторены в космическом корабле с капелькой кремниевого масла . Но подобные эксперименты, как несложно понять, удовольствие недешевое — не запускать же ради этого специальный космический корабль. А программы научных исследований в космосе и без того перенасыщены, так что там не всегда находится время для исследования капель. Значит, необходимо подобрать такие условия эксперимента, чтобы одновременно убрать как действие на исследуемый объект гравитации, так и эффекты вязкого окружения (в опытах Плато, например, это трение между каплей оливкового масла и окружающей ее смесью спирта и воды).

Физики из Ноттингемского университета предложили оригинальный способ компенсации гравитации . Они решили эту проблему, используя диамагнитную левитацию водяных капель (рис. 2). Результаты своих экспериментальных изысканий ученые из Ноттингема опубликовали в журнале Physics Review Letters в статье Nonaxisymmetric Shapes of a Magnetically Levitated and SpinningWater Droplet (статья находится в открытом доступе ).

Дело в том, что некоторые вещества по своей магнитной природе являются диамагнетиками (например, та же вода ), то есть слабо пропускают внутрь себя магнитное поле (идеальным диамагнетиком является сверхпроводник ).

Рис. 2 . Схематические рисунки и принцип действия экспериментальной установки, использованной авторами для исследования формы водяных капель (см. пояснения в тексте). Изображения из обсуждаемой статьи

Однако частично, на небольшую глубину, магнитное поле всё же проникает в диамагнитное вещество и генерирует на его поверхности электрический ток . Этот ток создает в диамагнетике собственное магнитное поле, которое как бы отталкивается от поля внешнего . Таким образом, сопротивление проникновению внешнего магнитного поля и заставляет диамагнетики зависать, или левитировать, в пространстве . Но необходимо понимать, что для возникновения диамагнитной левитации внешнее поле должно быть очень сильным. В опытах с водяными каплями магнитное поле, заставляющее капли зависать, по физическим меркам было гигантским — 16,5 Тл (в несколько десятков тысяч раз сильнее магнитного поля Земли). Интересно, что таким образом можно заставить левитировать не только водяные капли, но даже кузнечиков и лягушек (см. видео).

После того как задача об уничтожении силы тяжести была успешно решена (проблема окружающей среды при этом решении уже отпадает — вязкое трение со стороны воздуха ничтожно), необходимо было придумать механизм, который заставил бы жидкость внутри подвешенных водяных капель вращаться так же, как в опытах Плато. Решение этой задачи тоже оказалось «магнитным». Ученые создали «жидкий электрический мотор» : в каплю вставлялось два тонких золотых электрода, один из которых совпадал с осью симметрии капли (рис. 2а); через электроды пропускался ток, направление протекания которого было перпендикулярно силовым линиям внешнего магнитного поля.

В итоге возникающий момент силы Лоренца заставлял жидкость внутри капли вращаться, и частота этого вращения зависела от силы тока, протекающего между электродами (рис. 2b). Интересной дополнительной особенностью «жидкого электрического мотора» является способность неосевого (то есть несовпадающего с осью симметрии капли) электрода создавать на капле поверхностные волны небольшой амплитуды. Для чего это было необходимо, станет ясно дальше.

С помощью изобретенной авторами статьи техники удалось наблюдать различные формы капель. В частности, при вращении жидкости внутри таких объектов, согласно теоретическим предсказаниям, существует возможность наблюдать их переход из двудольной формы в треугольную (трехдольную), причем последняя структура, как предсказывает та же теория, должна быть неустойчива . На примере водяной капли объемом 1,5 мл (что соответствует диаметру 14 мм), у которой с помощью поверхностно-активного вещества коэффициент поверхностного натяжения уменьшен вдвое, английские ученые впервые показали, что, вопреки теоретическим предсказаниям, можно добиться устойчивости треугольной формы. Стабилизация достигалась за счет комбинации вращения капли и генерирования на ней поверхностных волн. Таким образом, поверхностные волны играли роль своего рода стабилизатора треугольной формы водяной капли.

Как оказалось, возбуждение на капле поверхностных волн вкупе с ее вращением позволяет получить значительное многообразие форм водяных капель, о которых Плато, возможно, даже и не догадывался .

Рис. 3 . Верхний рисунок — график изменения формы водяной капли объемом 1,5 мл со временем при изменении частоты вращения жидкости. График во вставке — зависимость тока между электродами от времени. Рисунки а-f — последовательность фотографий, показывающих изменение формы водяной капли. Название фотографий (М1, М2, М3, М4) соответствует названиям видеофайлов, демонстрирующих эволюцию формы капли. См. подробности в тексте. Рисунок и фотографии из обсуждаемой статьи

На рис. 3 приведена временная эволюция 1,5 мл водяной капли с поверхностно-активным веществом в своем составе при изменении частоты вращения (rps — количество оборотов в секунду). Несколько пояснений к графику. При малой частоте вращения и отсутствии поверхностных волн на капле ее форма напоминает сплюснутый сфероид (oblate spheroid) — проще говоря, форма капли овальная . После того как с помощью тока были активизированы поверхностные волны, а скорость вращения жидкости внутри капли продолжала увеличиваться, ее форма трансформировалась в сильно вытянутый овал — иными словами, стала двудольной (красная область на графике и снимок M1b под графиком). Желтый участок графика соответствует области, когда капля начинает вращаться вокруг своей оси как твердое тело (как единое целое) и когда одновременно с этим по капле «гуляют» поверхностные волны. В итоге капля выглядит так, как это показано на фотографии M1c — ученые такую форму капли назвали двудольная статическая + вращающаяся.

Дальнейшее увеличение силы тока и скорости вращения превращает каплю из овальной (двудольной) в треугольную (при этом динамическое поведение капли не твердотельное) — зеленая область на графике и фото М2. Далее, когда поверхностные волны стабилизировали такую структуру водяной капли, увеличивая скорость вращения можно добиться явления, при котором капля начинает себя вести подобно твердому телу — вращается как единое целое . (ТОР - форма вращающегося круга по спирали - Уроборос по Блаватсвкой, упоминается и у Ивана Ефремова, и вообще много где упоминается:) На графике эта область отражена синим цветом (см. также фото М4). Обращает на себя внимание существование переходной области, когда капля только начинает себя вести как твердое тело (см. фото М3). На графике такая область соответствует градации зеленого и синего цветов.

Несколько богаче в эволюционном отношении проявляет себя капля воды объемом 3 мл уже без добавок поверхностно-активных веществ (рис. 4). До некоторого времени поведение большей капли ничем качественно не отличается от рассмотренного выше. Однако, как это видно из рис. 4, на пятой минуте эксперимента при монотонно возрастающей угловой скорости вращения жидкости есть возможность наблюдать четырех- и даже пятиугольную форму капли (голубая и фиолетовые области на графике и фото М10 и М11), которая, однако, не ведет себя как твердое тело. Справедливости ради отметим, что такая форма не является устойчивой и со временем вырождается в двудольную (сильно вытянутый овал, фото М12), поведение которой соответствует вращающемуся твердому телу.

Здесь в виде zip-архива представлена галерея из 12 коротких фильмов, показывающих эволюцию водяных капель, изученных английскими учеными. Приведенные выше фото М1-М12 являются стоп-кадрами этих фильмов и соответствуют названиям фильмов: на видеофайлах М1-М4 заснята капля 1,5 мл, М5-М12 показана капля воды объемом 3 мл.

Рис. 4 . Верхний рисунок — график изменения формы водяной капли объемом 3 мл со временем при изменении частоты вращения жидкости. График во вставке — зависимость тока между электродами от времени. Рисунки а-h — последовательность фотографий, показывающих изменение формы водяной капли. Название фотографий (М5, М6 ... M12) соответствует названиям видеофайлов, демонстрирующих эволюцию формы капли. См. подробности в тексте. Рисунок и фотографии из обсуждаемой статьи

Эксперименты с каплями воды, по мнению ученых, представляют не только академический интерес. Поскольку стабилизация формы капли происходила вследствие сложного взаимодействия ее вращения и поверхностных волн на ней, то результаты опытов могут быть использованы в описании схожих физических явлений — как значительно большего (астрономического), так и меньшего (ядерного) масштаба. Например, при изучении формы объектов пояса Койпера, горизонта событий черных дыр или при исследовании форм быстровращающихся атомных ядер. (Кстати, заметим, что идея использовать «капельный» подход в описании характеристик атомных ядер уже довольно стара — достаточно вспомнить о полуэкспериментальной формуле Вайцзеккера, которая описывает энергию связи атомных ядер; правда, само это выражение на современном этапе развития науки уже не используется.)

Источник. R. J. A. Hill, L. Eaves. Nonaxisymmetric Shapes of a Magnetically Levitated and SpinningWater Droplet (полный текст — PDF, 3,45 Мб, дополнительные материалы к статье — PDF, 287 Кб) // Physical Review Letters, 101, 234501 (2008).

Казалось бы, что может быть проще капли? А оказывается, этот физический объект имеет массу секретов.

Какая форма у капли?

Очень часто падающие капли изображают следующим образом:

Это изображение не верно . На самом деле, во время падения, капля пребывает в состоянии невесомости, и силы поверхностного натяжения придают ей сферическую форму. Не стоит забывать, что вода имеет достаточный коэффициент поверхностного натяжения:

σ= 72,86·10 -3 Н/м

Представление, будто бы капля имеет вытянутый заостренный кончик связано с тем, что человек способен различать ее очертания только в процессе ее образования. Падает же капля быстро, и человек не в состоянии определить ее форму:

Однако, кроме сил поверхностного натяжения, могут действовать и другие силы, которые тоже повлияют на форму капли. Вот что об этом написано в Википедии :

Форма капли определяется совокупным действием поверхностного натяжения и других внешних сил (в первую очередь силы тяжести, а при высоких скоростях - аэродинамическими силами). Микроскопические капли, для которых сила тяжести не играет определяющей роли, имеют форму шара - тела с минимальной для данного объёма поверхностью. Крупные капли в земных условиях имеют шарообразную форму только при равенстве плотностей жидкости капли и окружающей её среды.
Падающие дождевые капли под действием силы тяжести, давления встречного потока воздуха и поверхностного натяжения принимают вытянутую форму. На несмачиваемых поверхностях капли приобретают форму приплюснутого шара.

Не стоит забывать, что в капле могут происходить колебания, в результате которых по ее поверхности будут распространятся волны. Подробнее об этом и не только предлагаю посмотреть ролик снятый в МКС , в условиях полной невесомости астронавт Дон Петтит экспериментирует с каплей (водяным пузырем) 130 мм в диаметре!: