ЭФФЕКТИВНОСТЬ АСИМПТОТИЧЕСКАЯ КРИТЕРИЯ

Понятие, позволяющее осуществлять в случае больших выборок количественное двух различных статистич. критериев, применяемых для проверки ложной и той же статистич. гипотезы. Необходимость измерять эффективность критериев возникла в 30-40-е гг., когда появились простые с точки зрения вычислений, но лнеэффективные

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЭФФЕКТИВНОСТЬ АСИМПТОТИЧЕСКАЯ КРИТЕРИЯ" в других словарях:

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

    Методы математич. статистики, не предполагающие знания функционального вида генеральных распределений. Название непараметрические методы подчеркивает их отличие от классических параметрических методов, в к рых предполагается, что генеральное… … Математическая энциклопедия

    Процесс представления информации в определенной стандартной форме и обратный процесс восстановления информации по ее такому представлению. В математич. литературе кодированием наз. отображение произвольного множества Ав множество конечных… … Математическая энциклопедия

Exact Tests provides two additional methods for calculating significance levels for the statistics available through the Crosstabs and Nonparametric Tests procedures. These methods, the exact and Monte Carlo methods, provide a means for obtaining accurate results when your data fail to meet any of the underlying assumptions necessary for reliable results using the standard asymptotic method. Available only if you have purchased the Exact Tests Options.

Example. Asymptotic results obtained from small datasets or sparse or unbalanced tables can be misleading. Exact tests enable you to obtain an accurate significance level without relying on assumptions that might not be met by your data. For example, results of an entrance exam for 20 fire fighters in a small township show that all five white applicants received a pass result, whereas the results for Black, Asian and Hispanic applicants are mixed. A Pearson chi-square testing the null hypothesis that results are independent of race produces an asymptotic significance level of 0.07. This result leads to the conclusion that exam results are independent of the race of the examinee. However, because the data contain only 20 cases and the cells have expected frequencies of less than 5, this result is not trustworthy. The exact significance of the Pearson chi-square is 0.04, which leads to the opposite conclusion. Based on the exact significance, you would conclude that exam results and race of the examinee are related. This demonstrates the importance of obtaining exact results when the assumptions of the asymptotic method cannot be met. The exact significance is always reliable, regardless of the size, distribution, sparseness, or balance of the data.

Statistics. Asymptotic significance. Monte Carlo approximation with confidence level, or exact significance.

  • Asymptotic . The significance level based on the asymptotic distribution of a test statistic. Typically, a value of less than 0.05 is considered significant. The asymptotic significance is based on the assumption that the data set is large. If the data set is small or poorly distributed, this may not be a good indication of significance.
  • Monte Carlo Estimate . An unbiased estimate of the exact significance level, calculated by repeatedly sampling from a reference set of tables with the same dimensions and row and column margins as the observed table. The Monte Carlo method allows you to estimate exact significance without relying on the assumptions required for the asymptotic method. This method is most useful when the data set is too large to compute exact significance, but the data do not meet the assumptions of the asymptotic method.
  • Exact . The probability of the observed outcome or an outcome more extreme is calculated exactly. Typically, a significance level less than 0.05 is considered significant, indicating that there is some relationship between the row and column variables.

Асимптотическим поведением (или асимптотикой) функции в окрестности некоторой точки а (конечной или бесконечной) понимают характер изменения функции при стремлении ее аргумента х к этой точке. Это поведение обычно стараются представить с помощью другой, более простой и изученной функции, которая в окрестности точки а с достаточной точностью описывает изменение интересующей нас функции или оценивает ее поведение с той или иной стороны. В связи с этим возникает задача сравнения характера изменения двух функций в окрестности точки а, связанная с рассмотрением их частного. Особый интерес представляют случаи, когда при х а обе функции являются либо бесконечно малыми (б.м.), либо бесконечно большими (б.б.). 10.1. Сравнение бесконечно малых функций Основная цель сравнения б.м. функций состоит в сопоставлении характера их приближения к нулю при х а, или скорости их стремления к нулю. Пусть б.м. при х а функции а(я) и Р(х) отличны от нуля в некоторой проколотой окрестности (а) точки а, а в точке а они равны нулю или не определены. Определение 10.1. Функции а(ж) и 0(х) называют б.м. одного порядка при а и записывают ог(а:)=в О (/?(«)) (символ О читают „О большое"), если при х а существует отличный от нуля конечный предел отношения а(ж)//?(я), т.е. Очевидно, что тогда, согласно (7.24), ЗИт €R\{0}, и правомерна запись Х^а0[а(х)). Символ О обладает свойством транзитивности, т.е. если - в самом деле, с учетом определения 10.1 и свойства произведения функций (см. (7.23)), имеющих конечные (в данном случае не равные нулю) пределы, получим АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ФУНКЦИЙ. Сравнение бесконечно малых функций. Определение 10.2. Функцию а(х) называют б.м. более высокого порядка малости по сравнению с (3(х) (или относительно /3(х)) при х а и записывают) (символ о читают ио малое если существует и равен нулю предел отношения а В этом случае также говорят, что функция является б.м. более низкого порядка малости по сравнению с а(х) при х а, причем слово малости обычно опускают (как и в случае более высокого порядка в определении 10.2). Сказанное означает, что если lim (то функция /}(х) является, согласно определению 10.2, б.м. более высокого порядка по сравнению с а(х) при х а и а(я) есть б.м. более низкого порядка по сравнению с /3(х) при х а, ибо в этом случае lijTi (fi(x)/ot(x)) . Так что можно записать Согласно теореме 7.3 о связи функции, ее предела и б.м. функции из (10.3) следует, что ot) - функция, б.м. при. Отсюда а(х) , т.е. значения |а(з)| при х, близких к а, много меньше значений \0(х)\. Иными словами, функция а(х) стремится к нулю быстрее функции /?(х). Теорема 10.1. Произведение любых б.м. при х а функций а(х) и Р(х)} отличных от нуля в некоторой проколотой окрестности точки а, есть при х-¥а б.м. функция более высокого порядка по сравнению с каждым из сомножителей. Действительно, согласно определению 10.2 б.м. более высокого порядка (с учетом определения 7.10 б.м. функции), равенства означают справедливость утверждения теоремы. Равенства, содержащие символы О и о, иногда называют асимптотическими оценками. Определение 10.3. Функции ot(x) и /3(х) называют несравнимыми б.м. при х -¥ а, если не существует ни конечного, ни бесконечного предела их отношения, т.е. если $ lim а(х)/0(х) (р£внокак $ lim 0(х)/а(х)). Пример 10.1. а. Функции а(х) = х и /?(x) = sin2ar в силу определения 10.1 - б.м. одного порядка при х 0, так как с учетом (б. Функция а{х) = 1 -coss, по определению 10.2, - б.м. более высокого порядка по сравнению с 0(х) = х при х 0, поскольку с учетом в. Функция а(зг) = \/x есть б.м. более низкого порядка по сравнению с fl(x) = х при х 0, так как г. Функции a(s) = = х согласно определению 10.3 - несравнимые б.м. при х 0, поскольку предела АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ФУНКЦИЙ. Сравнение бесконечно малых функций. не существует (ни конечного, ни бесконечного - см. пример 7.5). Степенная функция х11 с показателем степени п 6 N, п > 1, является при х а б.м. более высокого порядка по сравнению с хп~1} т.е. япа=ао(а:п"*1), так как lim (хЛ/хп"1) = При необходимости более точной сравнительной характеристики поведения б.м. функций при х - а одну из них выбирают в качестве своего рода эталона и называют ее основной. Конечно, выбор основной б.м. в известной мере произволен (стремятся выбрать попроще: х при ж-*0; х-1 при х -41; 1/х при х ->оо и т.п.). Из степеней 0к(х) основной б.м. функции /}(х) с различными показателями к > 0 (при к ^ 0 0к(х) не является б.м.) составляют шпалу сравнения для оценки более сложной б.м. функции a(z). Определение 10.4. Функцию a(z) называют б.м. к-го порядка малости относительно (3(х) при х а, а число к - порядком малости, если функции a(z) и /Зк(х) являются б.м. одного порядка при х а) т.е. если Слово „малости" и в этом случае обычно опускают. Отметим: 1) порядок к одной б.м. функции относительно другой может быть любым положительным числом; 2) если порядок функции а(х) относительно /3(х) равен к, то порядок функции Р(х) относительно а(х) равен 1/к; 3) не всегда для б.м. функции а(х), даже сравнимой со всеми степенями /?*(х), можно указать определенный порядок к. Пример 10.2. а. Функция cosx, согласно определению 10.4,- б.м. порядка к = 2 относительно 0(х) = х при х 0, так как с учетом б. Рассмотрим функции. Покажем, что при любом Действительно, согласно (7.32). Таким образом, б.м. при х-»+0 функция а1/1 сравнима с хк при любом к > О, но указать для этой функции порядок малости относительно х не удается. # Определить порядок одной б.м. функции относительно другой не всегда просто. Можно рекомендовать такой порядок действий: 1) написать под знаком предела отношение а(х)/0к(х)\ 2) проанализировать записанное отношение и попытаться упростить его; 3) опираясь на известные результаты, выдвинуть предположение о возможном значении к} при котором будет существовать не равный нулю конечный предел; 4) проверить предположение путем вычисления предела. Пример 10.3. Определим порядок б.м. функции tgx - sin х относительно х при х -» 0, т.е. найдем такое число к > О, чтобы Имеем АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ФУНКЦИЙ. Сравнение бесконечно малых функций. На этом этапе, зная, что при х 0, согласно (7.35) и (7.36), (sinx)/x 1 и cosx -> 1, и учитывая (7.23) и (7.33), можно определить, что условие (10.7) будет выполнено при к = 3. Действительно, непосредственное вычисление предела при к = 3 дает значение А = 1/2: Отметим, что при к > 3 получим бесконечный предел, а при предел будет равен нулю.

Диссертация

Поэтому одним из путей развития проверки статистических гипотез стал путь «эмпирического» построения критериев, когда конструируемая статистика критерия основана на определенном принципе, остроумной идее или здравом смысле, но оптимальность ее не гарантирована. Для того, чтобы оправдать применение подобных статистик при проверке гипотез против определенного класса альтернатив, чаще всего методом...

  • 1. Вспомогательные сведения
    • 1. 1. Сведения из теории С/- и V- статистик
    • 1. 2. Определение и вычисление бахадуровской эффективности
    • 1. 3. О больших уклонениях II- и V- статистик
  • 2. Критерии симметрии Барингхауза-Хенце
    • 2. 1. Введение
    • 2. 2. Статистика
    • 2. 3. Статистика
  • 3. Критерии экспоненциальности
    • 3. 1. Введение
    • 3. 2. Статистика Я
    • 3. 3. Статистика п
  • 4. Критерии нормальности
    • 4. 1. Введение
    • 4. 2. Статистика В^
    • 4. 3. Статистика В^п
    • 4. 4. Статистика В|)П
  • 5. Критерии согласия с законом Коши
    • 5. 1. Введение
    • 5. 2. Статистика
    • 5. 3. Статистика

Асимптотические свойства критериев симметрии и согласия, основанных на характеризациях (реферат, курсовая, диплом, контрольная)

В настоящей диссертации строятся и исследуются критерии согласия и симметрии, основанные на характеризационных свойствах распределений, а также вычисляется их асимптотическая относительная эффективность для ряда альтернатив.

Построение статистических критериев и изучение их асимптотических свойств является одной из важнейших задач математической статистики. При проверке простой гипотезы против простой альтернативы задача решается с помощью леммы Неймана-Пирсона, которая, как известно, дает оптимальный (наиболее мощный) критерий в классе всех критериев заданного уровня. Это критерий отношения правдоподобия.

Однако для более трудных и важных для практики задач проверки гипотез, связанных либо с проверкой сложных гипотез, либо с рассмотрением сложных альтернатив, равномерно наиболее мощные критерии существуют редко, а роль критерия отношения правдоподобия существенно меняется. Статистику отношения правдоподобия обычно не удается вычислить в явном виде, она теряет свойство оптимальности, а ее распределение неустойчиво к изменениям статистической модели. Более того, статистик часто вообще не может определить вид альтернативы, без чего построение параметрических критериев теряет смысл.

Поэтому одним из путей развития проверки статистических гипотез стал путь «эмпирического» построения критериев, когда конструируемая статистика критерия основана на определенном принципе, остроумной идее или здравом смысле, но оптимальность ее не гарантирована.

Типичными примерами таких статистик являются статистика знаков, статистика х2 Пирсона (1900), статистика Колмогорова (1933), измеряющая равномерное расстояние между эмпирической и истинной функцией распределения, ранговый коэффициент корреляции Кендалла (1938) или статистика Бикела-Розенблатта (1973), основанная на квадратичном риске ядерной оценки плотности . В настоящее время математическая статистика располагает многими десятками «эмпирических» статистик для проверки гипотез согласия, симметрии, однородности, случайности и независимости, и в литературе постоянно предлагаются все новые и новые статистики такого типа. Огромная литература посвящена изучению их точных и предельных распределений, оценкам скорости сходимости, большим уклонениям, асимптотическим разложениям и т. д.

Для того, чтобы оправдать применение подобных статистик при проверке гипотез против определенного класса альтернатив, чаще всего методом статистического моделирования вычисляют их мощность. Однако для любого состоятельного критерия мощность с ростом объема выборки стремится к единице, и потому не всегда информативна. Более глубокий анализ сравнительных свойств статистик может быть осуществлен на основе понятия асимптотической относительной эффективности (АОЭ). Различные подходы к вычислению АОЭ предлагались Э. Питменом, Дж. Ходжесом и Э. Леманом, Р. Бахадуром, Г. Черновым и В. Калленбергом в середине XX в., результаты развития теории АОЭ к середине 90-х годов подведены в монографии . Общепринято мнение, что синтез новых критериев должен сопровождаться не только анализом их свойств, но и вычислением АОЭ для того, чтобы оценить их качество и дать обосно ванные рекомендации по их использованию на практике.

В настоящей работе используется идея построения критериев на основе характеризации распределений свойством равнораспределенности. Ха-рактеризационная теория берет свое начало из работы Д. Пойа, опубликованной в 1923 г. Затем она развивалась в работах И. Марцинкевича, С. Н. Бернштейна, Э. Лукача, Ю. В. Линника, A.A. Зингера, Ж. Дармуа, В. П. Скитовича, С.Р. Pao, A.M. Кагана, Я. Галамбоша, С. Котца, Л. Б. Клебанова и многих других математиков. Литература по этому вопросу велика, и в настоящее время существует несколько монографий, посвященных характеризациям, например, , , , , , , .

Идея построения статистических критериев на основе характериза-ций свойством равнораспределенности принадлежит Ю. В. Линнику , . В конце обширной работы он писал: «. можно поставить вопрос о построении критериев согласия выборки со сложной гипотезой, основанных на одинаковой распределенности двух соответствующих статистик gi (xi> .хг) и д2{х, ¦¦¦хг) и на сведении, таким образом, вопроса к критерию однородности.»

Вернемся к классической теореме Пойа , чтобы объяснить на конкретном примере, как может действовать такой подход. В простейшем варианте эта теорема формулируется следующим образом.

Теорема Пойа. Пусть X и Y две независимые и одинаково распределенные центрированные с. в. Тогда с. в. (X + Y)//2 и X одинаково распределены в том и только том случае, когда закон распределения X нормальный.

Предположим, что мы имеем выборку из центрированных независимых наблюдений Xi, ., Хп и хотим проверить (сложную) нулевую гипотезу о принадлежности распределения этой выборки к нормальному закону со средним 0 и некоторой дисперсией. Построим по нашей выборке обычную эмпирическую функцию распределения (ф.р.) п

Fn (t) = п-^ВД

Gn (t) = п~2? ВД + Xj < iv^}, t <= R1. i, j=l

В силу теоремы Гливенко-Кантелли, справедливой и для V-статисти-ческих эмпирических ф.р. , при больших п функция Fn (t) равномерно сближается с ф.р. F (t) = Р (Х < t), а функция Gn (t) равномерно сближается с G (t) = ЦХ + У < tV2). Поскольку при нулевой гипотезе F = G, то Fn (t) близка к Gn (t), и критерий значимости можно основывать на подходящем функционале Тп от разности Fn (t) — Gn (t). Напротив, при альтернативе (то есть при нарушении нормальности) по теореме Пойа F ф G, что приводит к большим значениям Тп и позволяет отвергнуть нулевую гипотезу, обеспечивая состоятельность критерия.

Однако эта конструкция, основывающаяся на идее Ю. В. Линника, почти не получила развития, возможно, ввиду технических трудностей при построении и анализе получающихся критериев. Другая причина состоит, вероятно, в том, что характеризации распределений свойством равнораспределенности немногочисленны и редко встречаются.

Нам известны лишь немногие работы, посвященные в той или иной мере развитию идеи Ю. В. Линника. Это работы Барингхауза и Хенце и Мульере и Никитина , о которых будет сказано ниже. Имеются и работы, в которых критерии согласия для конкретных распределений также строятся на основе характеризаций, но не на основе равнораспределенности, например, , , , , , , , .

Наиболее часто в литературе встречается использование характериза-ции экспоненциального распределения различными вариантами свойства отсутствия памяти , , , , , , .

Следует отметить, что почти во всех этих работах (кроме разве лишь и ) АОЭ рассматриваемых критериев не вычисляется и не обсуждается. В настоящей диссертации мы не только исследуем асимптотические свойства известных и предлагаемых нами критериев, основанных на характеризациях, но и вычисляем их локальную точную (или приближенную) АОЭ по Бахадуру.

Дадим теперь определение понятию АОЭ. Пусть {Тп} и {1^} - две последовательности статистик, построенные по выборке Х,., Хп с распределением Рд, где в € 0 С Я1, и проверяется нулевая гипотеза Но: 9 € во С в против альтернативы А: в € ©-х = ©-6о. Пусть Мт (а, Р,0) — минимальный объем выборки Х[,., Хп, для которого последовательность {Тп} с заданным уровнем значимости, а > 0 достигает мощности /3 < 1 при альтернативном значении параметра в € (c)1- Аналогично вводится в). Относительной эффективностью критерия, основанного на статистике Тп, по отношению к критерию, основанному на Уп, называется величина равная обратному отношению указанных выборочных объемов:

Поскольку относительная эффективность как функция трех аргументов не поддается вычислению в явном виде даже для самых простых статистик, то принято рассматривать пределы:

Птет, у (а,/?, 0), Нтет, у (а,/3,0).

В первом случае получается АОЭ по Бахадуру, второй предел определяет АОЭ по Ходжесу-Леману, а третий приводит к определению АОЭ по Питмену. Поскольку в практических приложениях наиболее интересны именно случаи малых уровней значимости, высоких мощностей и близких альтернатив, то все три определения представляются обоснованными и естественными.

В данной работе для сравнения критериев мы будем пользоваться АОЭ по Бахадуру. Для этого есть несколько причин. Во-первых, питме-новская эффективность пригодна в основном для асимптотически нормальных статистик, и при этом условии совпадает с локальной баха-дуровской эффективностью , . Мы же рассматриваем не только асимптотически нормальные статистики, но и статистики квадратичного типа, для которых предельное распределение при нулевой гипотезе резко отличается от нормального, так что питменовская эффективность неприменима. Во-вторых, АОЭ по Ходжесу-Леману непригодна для исследования двусторонних критериев , , поскольку все они оказываются асимптотически оптимальными, а для односторонних критериев эта АОЭ обычно локально совпадает с бахадуровской АОЭ . В третьих, недавно был достигнут значительный прогресс в области больших уклонений для тестовых статистик, что является решающим при вычислении АОЭ по Бахадуру. Мы имеем в виду большие уклонения и— и V—статистик, описанные в недавних работах и .

Перейдем теперь к обзору содержания диссертации. Первая глава носит вспомогательный характер. В ней излагаются необходимые теоретические и технические сведения из теории 11-статистик, теории больших уклонений и теории асимптотической эффективности по Бахадуру.

Глава 2 посвящена построению и исследованию критериев для проверки гипотезы симметрии. Барингхауз и Хенце в предложили идею построения критериев симметрии, основанных на следующей элементарной характеризации.

Пусть X и У — н.о.р.с.в., имеющие непрерывную ф.р. Тогда |Х| и |тах (Х, У)| одинаково распределены тогда и только тогда, когда X и У симметрично распределены относительно нуля.

Эту характеризацию мы используем для построения новых критериев симметрии. Вспомним, что несколько классических критериев симметрии (см. , гл.4) основаны на характеризации симметрии еще более простым свойством равнораспределенности X и —X.

Вернемся к характеризации Барингхауза-Хенце. Пусть Х, ., Хп наблюдения, имеющие непрерывную ф.р. <7. Рассмотрим проверку гипотезы симметрии:

Н0: ОД = 1 — <3(-:г) V я (Е Я1. Это сложная гипотеза, поскольку вид С? не уточняется. В качестве альтернатив мы рассмотрим параметрическую альтернативу сдвига, т. е. G (x-0) = F (x — в), в > 0- скошенную (skew) альтернативу , т. е. д (х-в) = 2f (x)F ($x), в > 0- лемановскую альтернативу , т. е. G (x-, 6) = F1+e (x), 6 > 0 и альтернативу загрязнения , т. е. G{x-6) = (1 — 6) F{x) + 6Fr+1(x), в > 0, г > 0, где F (x) и f (x) являются ф.р. и плотностью некоторого симметричного распределения.

В соответствии с указанной выше характеризацией строится эмпирическая ф.р., основанная на |Xj|,., Хп, п

Hn (t) = n~2 J2 Цтах (Х^Хк)<г}. На основе этих функций составляются статистики: лоо ):

Пусть X uY — неотрицательные и невырожденные н.о.р.с.в., имеющие дифференцируемую в нуле ф.р. F, и пусть 0 < а < 1. Тогда X и min (^, —) одинаково распределены тогда и только тогда, когда F есть ф.р. экспоненциального закона.

Помимо построения самого критерия согласия и изучения его асимптотических свойств, представляют интерес вычисление АОЭ нового критерия и исследование ее зависимости от параметра а.

Второе обобщение этой характеризации принадлежит Дезу . Мы сформулируем его на основе более поздних работ , :

Пусть Xi, ., Хт, т ^ 2 — неотрицательные и невырожденные н.о.р. с.в., имеющие дифференцируемую в нуле ф.р. F. Тогда статистики Х и т minpfi, ., Хт) одинаково распределены тогда и только тогда, когда F есть ф.р. экспоненциального закона.

Пусть Хх,., Хп — независимые наблюдения, имеющие ф.р. Основываясь на сформулированных выше характеризациях, мы можем проверить гипотезу экспоненциальности Но, которая состоит в том, что (7 есть ф.р. экспоненциального закона.Р, против альтернативы Н, состоящей в том, что С Ф? при слабых дополнительных условиях.

В соответствии с данными характеризациями строятся эмпирическая ф.р. п = пВД < О (°-0−3) 1 и -статистические ф.р. п-2 ± (* ^ < 4} + ^{тш (?, < «}), 1 П

Мы предлагаем основывать критерии для проверки экспоненциаль-ности на статистиках: пкп = - с&bdquo-(*)] аоп{1).

В качестве альтернатив мы выбираем стандартные альтернативы, используемые в литературе по проверке экспоненциал ьности: альтернативу Вейбулла с д{х) = (в + 1) хеехр (—х1+в), х ^ 0- альтернативу Макехама с д{х) = (1 + 0(1 — ехр (—х))) ехр (—х — 0(ехр (-х) — 1 + х)), х ^ 0- альтернативу линейности функции интенсивности отказов с д (х) = (1 + вх) ехр[—ж — ^вх2], х^О.

Для предложенных выше двух статистик выписываются предельные распределения при нулевой гипотезе:

Теорема 3.2.1 Для статистики И£ при п —* оо имеет место соотношение где Дз (а) определена в (3.2.2). Теорема 3.3.1 Для статистики п при п —> оо имеет место соотношение

Щ0,(т + 1)2А1(т)), где Д4 (т) определена в (3.3.6).

Поскольку обе статистики зависят от параметров, а и т, то мы устанавливаем, при каких значениях параметров АОЭ по Бахадуру достигают своих максимумов и находим эти значения. Кроме того, мы строим альтернативу, при которой максимум достигается в точке, а ф ½.

Четвертая глава посвящена проверке гипотезы о нормальности. Существует множество характеризаций нормального закона как одного из центральных законов теории вероятностей и математической статистики, и две монографии, посвященные исключительно этому вопросу , . Мы рассмотрим слегка упрощенный вариант известной характери-зации из и :

Пусть Хг, Х2, ., Хт — центрированные н.о.р.с.в., имеющие ф.р. о константы а, а-2,., ат таковы, что 0 < а* < 1 и = 1. Тогда статистики Х и одинаково распределены тогда и только тогда, когда F (x) = Ф (х/а), то есть F — ф.р. нормального закона с нулевым средним и некоторой дисперсией, а > 0.

Пусть Х, ., Хп выборка с ф.р. G. Основываясь на этой характериза-ции, мы можем проверить основную гипотезу Я0, которая состоит в том, что G есть ф.р. нормального закона Фа (х) = Ф (х/а), против альтернативы Hi, состоящей в том, что G ф Фа. Строится обычная эмпирическая ф.р. Gn и V-статистическая ф.р. п ^

Bm, n (t) = п~т (Е 1 + - + < *}),

1.¿-т=1 с

Здесь и в дальнейшем символ, а означает суммирование по всем перестановкам индексов. Критерии для проверки нормальности могут быть основаны на следующих статистиках:

В, п = Г dGn (t), J —00 оо

BmAt)-Gn (t)]dGn (t), оо

Bin = Г }