ОПРЕДЕЛЕНИЕ

Гидроксидами называются сложные вещества, в состав которых входят атомы металлов, соединенные с одной или несколькими гидроксогруппами.

Большинство оснований - твердые вещества с различной растворимостью в воде. Гидроксид меди (II) голубого цвета (рис. 1), гидроксид железа (III) бурого, большинство других белого цвета.

Рис. 1. Гидроксид меди (II). Внешний вид.

Получение гидроксидов

Растворимые основания (щелочи) в лаборатории можно получить при взаимодействии активных металлов и их оксидов с водой:

CaO + H 2 O = Ca(OH) 2 .

Щелочи гидроксид натрия и гидроксид кальция получают электролизом водных растворов хлорида натрия и хлорида калия.

Нерастворимые в воде основания получают по реакции солей с щелочами в водных растворах:

FeCl 3 + 3NaOH aq = Fe(OH) 3 ↓ + 3NaCl.

Химические свойства гидроксидов

Растворимые и нерастворимые основания имеют общее свойства: они реагируют с кислотами с образованием солей и воды (реакция нейтрализации):

NaOH + HCl = NaCl + H 2 O;

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O.

Растворы щелочей изменяют цвет некоторых веществ - лакмуса, фенолфталеина и метилового оранжевого, называемых индикаторами (табл. 1).

Таблица 1. Изменение цвета индикаторов под воздействием растворов кислот и оснований.

Кроме общего свойства, щелочи и нерастворимые в воде основания обладают также специфическими. Например, при нагревании голубого осадка гидроксида меди (II) образуется вещество черного цвета - это оксид меди (II):

Cu(OH) 2 = CuO + H 2 O.

Щелочи, в отличие от нерастворимых оснований, при нагревании обычно не разлагаются. Их растворы действуют на индикаторы, разъедают органические вещества, реагируют с растворами солей (если в их состав входит металл, способный образовать нерастворимое основание) и кислотными оксидами:

Fe 2 (SO 4) 3 + 6KOH = 2Fe(OH) 3 ↓ + 3K 2 SO 4 ;

2KOH + CO 2 = K 2 CO 3 + H 2 O.

Применение гидроксидов

Гидроксиды находят широкое применение в промышленности и быту. Например, большое значение имеет гидроксид кальция. Это белый рыхлый порошок. При смешивании его с водой образуется так называемое известковое молоко. Так как гидроксид кальция немного растворяется в воде, то после отфильтровывания известкового молока получается прозрачный раствор - известковая вода, которая мутнеет при пропускании через неё диокисда углерода. Гашеную известь применяют дляприготовления бордосской смеси -средства борьбы с болезнями и вредителями растений. Известковое молоко широко используют в химической промышленности, например при производстве сахара, соды и других веществ.

Гидроксид натрия применяют для очистки нефти, производства мыла, в текстильной промышленности. Гидроксид калия и гидроксид лития используют в аккумуляторах.

Примеры решения задач

ПРИМЕР 1

Задание В одном из гидроксидов олова массовая доля элементов равна: олова - 63,6%; кислорода - 34,2%; водорода - 2,2%. Определите формулу этого гидроксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (олово), «у» (кислород) и «z» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(Sn)/Ar(Sn) : ω(O)/Ar(O) : ω(H)/Ar(H);

x:y:z = 63,6/119: 34,2/16: 2,1/1;

x:y:z = 0,53: 2,14: 2,1 = 1: 4: 4.

Значит формула гидроксида олова имеет вид Sn(OH) 4 .

Ответ Формула гидроксида олова имеет вид Sn(OH) 4

ПРИМЕР 2

Задание Определите массовую долю гидроксида бария в растворе, полученном при смешивании воды массой 50 г и оксида бария массой 1,2 г.
Решение Массовая доля вещества Х в растворе рассчитывается по следующей формуле:

ω (Х) = m(X) / m solution × 100%.

Масса раствора складывается из масс растворенного вещества и растворителя:

m solution = m(H 2 O) + m(BaO) = 50 + 1,2 = 51,2 г.

Запишем уравнение реакции получения гидроксида бария:

BaO + H 2 O = Ba(OH) 2 .

Рассчитаем количества моль исходных веществ:

n(H 2 O) = m(H 2 O) / M(H 2 O);

M(H 2 O) = 18 г/моль;

n(H 2 O) = 50 / 18 = 2,8 моль.

n(BaO) = m(BaO) / M(BaO);

M(BaO) = 153 г/моль;

n(BaO) = 1,2 / 153 = 0,008 моль.

Расчет ведем по соединению, находящемуся в недостатке (оксид бария). Согласно уравнению

n(BaO) :n(Ba(OH) 2) = 1:1, т.е. n(Ba(OH) 2) = n(BaO) = 1,04 моль.

Тогда масса образовавшегося гидроксида бария будет равна:

m(Ba(OH) 2) = n(Ba(OH) 2) × M(Ba(OH) 2);

M(Ba(OH) 2) = 171 г/моль;

m(Ba(OH) 2) = 0,008 ×171 = 1,368 г.

Найдем массовую долю гидроксида бария в растворе:

ω (Ba(OH) 2) = 1,368 / 51,2 × 100% = 2,67%.

Ответ Массовая доля гидроксида бария равна 2,67%

Основания, амфотерные гидроксиды

Основания - это сложные вещества, состоя­щие из атомов металла и одной или нескольких гидроксогрупп (-OH). Общая формула Me +y (OH) y , где у - число гидроксогрупп, равное степени окисления металла Me. В таблице представлена классификация осно­ваний.


Свойства щелочей гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса - в синий цвет, фенолфталеина - в малиновый.

2. Водные растворы диссоциируют:

3. Взаимодействуют с кислотами, вступая в реак­цию обмена:

Многокислотные основания могут давать сред­ние и основные соли:

4. Взаимодействуют с кислотными оксидами, об­разуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

б) в растворах:

6. Взаимодействуют с растворимыми в воде соля­ми, если образуется осадок или газ:

Нерастворимые основания (Cr(OH) 2 , Mn(OH) 2 и др.) взаимодействуют с кислотами и разлага­ются при нагревании:

Амфотерные гидроксиды

Амфотерными называют соединения, которые в зависимости от условий могут быть как доно­рами катионов водорода и проявлять кислотные свойства, так и их акцепторами, т. е. проявлять основные свойства.

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они об­наруживают основные свойства:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

2. Взаимодействуя со щелочами - сильными ос­нованиями, они обнаруживают кислотные свой­ства:

Zn(OH) 2 + 2NaOH = Na 2 ( комплексная соль)

Al(OH) 3 + NaOH = Na ( комплексная соль)

Комплексными называют соединения, в кото­рых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.


Общий метод получения оснований бази­руется на реакциях обмена, с помощью которых могут быть полу­чены как нерастворимые, так и растворимые основания.

CuSО 4 + 2КОН = Cu(OH) 2 ↓ + K 2 SО 4

К 2 СО 3 + Ва(ОН) 2 = 2 КОН + BaCO 3 ↓

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих ам­фотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например:

АlСl 3 + 4КОН = К[Аl(ОН) 4 ] + 3КСl

В подобных случаях для получения гидроксидов используют гид­роксид аммония, в котором амфотерные гидроксиды не растворяются:

АlСl 3 + 3NH 3 + ЗН 2 О = Аl(ОН) 3 ↓ + 3NH 4 Cl

Гидроксиды серебра и ртути настолько легко разлагаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNО 3 + 2КОН = Ag 2 О↓ + Н 2 О + 2KNO 3

В промышленности щелочи обычно получают электролизом вод­ных растворов хлоридов.

2NaCl + 2Н 2 О → ϟ → 2NaOH + H 2 + Cl 2

Щелочи можно также получить взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой.

2Li + 2Н 2 О = 2LiOH + Н 2

SrO + Н 2 О = Sr(OH) 2


Кислоты

Кислотами называются сложные вещества, мо­лекулы которых состоят из атомов водорода, спо­собных замещаться на атомы металла, и кислот­ных остатков. При обычных условиях кислоты могут быть тверды­ми (фосфорная H 3 PO 4 ; крем­ниевая H 2 SiO 3) и жидкими (в чистом виде жидкостью будет серная кислота H 2 SO 4).

Такие газы, как хлороводород HCl, бромоводо­род HBr, сероводород H 2 S, в водных растворах об­разуют соответствующие кислоты. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяет­ся заряд кислотного остатка (аниона) и основность кислоты.

Согласно протолитической теории кислот и оснований, предло­женной одновременно датским химиком Брёнстедом и английским химиком Лоури, кислотой называют вещество, отщепляющее при данной реакции протоны, а основанием - вещество, способное при­нимать протоны.

кислота → основание + Н +

На основе таких представлений понятны основные свойства ам­миака, который благодаря наличию неподеленной электронной пары при атоме азота эффективно принимает протон при взаимо­действии с кислотами, образуя ион аммония посредством донорно­акцепторной связи.

HNO 3 + NH 3 ⇆ NH 4 + + NO 3 —

кислота основание кислота основание

Более общее определение кислот и оснований предложил амери­канский химик Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем не обязательно происходят с переносом про тона. В определении кислот и оснований по Льюису основная роль в химических реакциях отводится электронным парам.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

Так, например, фторид алюминия AlF 3 - это кислота, так как он способен принимать электронную пару при взаимодействии с аммиаком.

AlF 3 + :NH 3 ⇆ :

Катионы, анионы или нейтральные молекулы, способные отда­вать электронные пары, называют основаниями Льюиса (аммиак - основание).

Определение Льюиса охватывает все кислотно-основные про­цессы, которые рассматривались ранее предложенными теориями. В таблице сопоставлены определения кислот и оснований, ис­пользуемые в настоящее время.

Номенклатура кислот

Поскольку существуют разные определения кислот, их классификация и номенклатура до­вольно условны.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (например, HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4) и трехосновные (Н 3 РO 4).

По составу кислоты делят на бескислородные (НСl, H 2 S) и кисло­родсодержащие (НСlO 4 , HNO 3).

Обычно названия кислородсодержащих кислот производятся от названия неметалла с прибавлением окончаний -кая, -вая, если сте­пень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются (в порядке уменьшения сте­пени окисления металла): -оватая, истая, -оватистая:




Если рассмотреть полярность связи водород-неметалл в пределах периода, легко можно связать полярность этой связи с положени­ем элемента в Периодической системе. От атомов металлов, легко теряющих валентные электроны, атомы водорода принимают эти электроны, образуя устойчивую двухэлектронную оболочку типа оболочки атома гелия, и дают ионные гидриды металлов.

В водородных соединениях элементов III-IV групп Периодиче­ской системы бора, алюминия, углерода, кремния образуют кова­лентные, слабополярные связи с атомами водорода, не склонные к диссоциации. Для элементов V-VII групп Периодической системы в пределах периода полярность связи неметалл-водород увеличи­вается с зарядом атома, но распределение зарядов в возникающем диполе иное, чем в водородных соединениях элементов, склонных отдавать электроны. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттяги­вают к себе (поляризуют) пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах СН 4 - NH 3 - Н 2 O - HF или SiH 4 - PH 3 - H 2 S - НСl связи с атомами водорода, оставаясь кова­лентными, приобретают более полярный характер, а атом водорода в диполе связи элемент-водород становится более электроположи­тельным. Если полярные молекулы оказываются в полярном рас­творителе, может происходить процесс электролитической диссо­циации.

Обсудим поведение кислородсодержащих кислот в водных рас­творах. У этих кислот имеется связь Н-О-Э и, естественно, на по­лярность связи Н-О влияет связь О-Э. Поэтому эти кислоты диссо­циируют, как правило, легче, чем вода.

H 2 SO 3 + H 2 O ⇆ H з O + + HSO 3

HNO 3 + H 2 O ⇆ H з O + + NO 3

На нескольких примерах рассмотрим свойства кислородсодержа­щих кислот, образованных элементами, которые способны прояв­лять разную степень окисления. Известно, что хлорноватистая кис­лота НСlO очень слабая, хлористая кислота НСlO 2 также слабая, но сильнее хлорноватистой, хлорноватая кислота НСlO 3 сильная. Хлор­ная кислота НСlO 4 - одна из самых сильных неорганических кислот.


Для диссоциации по кислотному типу (с отщеплением иона Н) необходим разрыв связи О-Н. Как можно объяснить уменьшение прочности этой связи в ряду НСlO - НСlO 2 - НСlO 3 - НСClO 4 ? В этом ряду увеличивается число атомов кислорода, связанных с цен­тральным атомом хлора. Каждый раз, когда образуется новая связь кислорода с хлором, от атома хлора, а следовательно, и от одинар­ной связи О-Cl оттягивается электронная плотность. В результате электронная плотность частично уходит и от связи О-Н, которая из- за этого ослабляется.

Такая закономерность - усиление кислотных свойств с возрас танием степени окисления центрального атома - характерна не только для хлора, но и для других элементов. Например, азотная кис­лота HNO 3 , в которой степень окисления азота +5, более сильная, чем азотистая кислота HNO 2 (степень окисления азота +3); серная кислота H 2 SO 4 (S +6) более сильная, чем сернистая кислота H 2 SO 3 (S +4).

Получение кислот

1. Бескислородные кислоты могут быть полу­чены при непосредственном соединении неметаллов с водородом .

Н 2 + Сl 2 → 2НСl,

H 2 + S ⇆ H 2 S

2. Некоторые кислородсодержащие кислоты могут быть получе­ны взаимодействием кислотных оксидов с водой .

3. Как бескислородные, так и кислородсодержащие кислоты мож­но получить по реакциям обмена между солями и другими кислотами.

BaBr 2 + H 2 SO 4 = BaSO 4 ↓ + 2НВr

CuSO 4 + H 2 S = H 2 SO 4 + CuS↓

FeS + H 2 SO 4(pa зб) = H 2 S+FeSO 4

NaCl (T) + H 2 SO 4(конц) = HCl + NaHSO 4

AgNO 3 + HCl = AgCl↓ + HNO 3

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O

4. Некоторые кислоты могут быть получены с помощью окислительно-восстановительных реакций.

Н 2 O 2 + SO 2 = H 2 SO 4

3Р + 5HNO 3 + 2Н 2 O = ЗН 3 РO 4 + 5NO 2

Кислый вкус, действие на индикаторы, элек­трическая проводимость, взаимодействие с метал­лами, основными и амфотерными оксидами, осно­ваниями и солями, образование сложных эфиров со спиртами - эти свойства являются общими для неорганических и органических кислот.

можно разделить на два типа ре­акций:

1) общие для кислот реакции связаны с образованием в водных рас­творах иона гидроксония Н 3 O + ;

2) специфические (т. е. характерные) реакции конкретных кислот.

Ион водорода может вступать в окислителъно-восстановительные реакции, восстанавливаясь до водорода, а также в реакции соединения с отрицательно заряженными или нейтральными ча­стицами, имеющими неподеленные пары электронов, т. е. в кис­лотно-основные реакции.

К общим свойствам кислот относятся реакции кислот с металла­ми, стоящими в ряду напряжений до водорода, например:

Zn + 2Н + = Zn 2+ + Н 2

К кислотно-основным реакциям относятся реакции с основными оксидами и основаниями, а также со средними, основными, а ино­гда и кислыми солями.

2 CO 3 + 4HBr = 2CuBr 2 + CO 2 + 3Н 2 O

Mg(HCO 3) 2 + 2НСl = MgCl 2 + 2СO 2 + 2Н 2 O

2KHSO 3 + H 2 SO 4 = K 2 SO 4 + 2SO 2 + 2H 2 O

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем на каждой следующей ступени диссоциация проходит труд­нее, поэтому при избытке кислоты чаще всего образуются кислые соли, а не средние.

Са 3 (РO 4) 2 + 4Н 3 РO 4 = 3Са(Н 2 РO 4) 2

Na 2 S + Н 3 РО 4 = Na 2 HPO 4 + H 2 S

NaOH + H 3 PO 4 = NaH 2 PO 4 + Н 2 O

КОН + H 2 S = KHS + Н 2 O

На первый взгляд, может показаться удивительным образование кислых солей одноосновной фтороводородной (плавиковой) кислотой. Однако этот факт можно объяснить. В отличие от всех других галогеноводород­ных кислот плавиковая кислота в растворах частично полимеризована (благодаря образованию водородных связей) и в ней могут при­сутствовать разные частицы (HF) X , а именно H 2 F 2 , H 3 F 3 и т. д.

Частный случай кислотно-основного равновесия - реакции кис­лот и оснований с индикаторами, которые изменяют свою окраску в зависимости от кислотности раствора. Индикаторы использу­ются в качественном анализе для обнаружения кислот и основа­ний в растворах.

Самые часто применяемые индикаторы - лакмус нейтральной среде фиолетовый цвет, в кислой - красный, в щелочной - си­ний), метилоранж кислой среде красный, в нейтральной - оран­жевый, в щелочной - желтый), фенолфталеин сильнощелочной среде малиново-красный, в нейтральной и кислой - бесцветный).

Специфические свойства различных кислот могут быть двух типов: во-первых, реакции, приводящие к образованию нерастворимых солей, и, во-вторых, окислительно-восстановительные превращения. Если реакции, связанные с наличием у них иона Н + , общие для всех кислот (качественные реакции для обнаружения кислот), специфические реакции используются как качественные на отдельные кислоты:

Ag + + Cl — = AgCl (белый осадок)

Ва 2+ + SO 4 2- = BaSO 4(белый осадок)

3Ag + + PO 4 3 — = Ag 3 PO 4(желтый осадок)

Некоторые специфические реакции кислот обусловлены их окис­лительно-восстановительными свойствами.

Бескислородные кислоты в водном растворе могут только окисляться.

2КМnO 4 + 16НСl = 5Сl 2 + 2КСl + 2МnСl 2 + 8Н 2 O

H 2 S + Вг 2 = S + 2НВг

Кислородсодержащие кислоты могут окисляться только в том случае, если центральный атом в них находится в низшей или про­межуточной степени окисления, как, например, в сернистой кисло­те:

H 2 SO 3 + Сl 2 + Н 2 O = H 2 SO 4 + 2НСl

Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления (S +6 , N +5 , Сг +6), прояв­ляют свойства сильных окислителей. Концентрированная H 2 SO 4 - сильный окислитель.

Сu + 2H 2 SO 4(конц) = CuSO 4 + SO 2 + 2Н 2 O

Pb + 4HNO 3 = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

C + 2H 2 SO 4(конц) = CO 2 + 2SO 2 + 2H 2 O

Следует запомнить, что:

  • Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряже­ний левее водорода, при соблюдении ряда усло­вий, важнейшим из которых является образование в результате реакции растворимой соли. Взаимо­действие HNO 3 и Н 2 SO 4 (конц.) с металлами проте­кает иначе.

Концентрированная серная кислота на холоде пассивирует алюминий, железо, хром.

  • В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:


  • Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется раствори­мая соль:
  • И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут об­разовывать как средние, так и кислые соли (это реакции нейтрализации):

  • Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:


Взаимодействие H 3 PO 4 с известняком прекра­тится из-за образования на поверхности последнего нерастворимого осадка Ca 3 (PO 4) 2 .

Особенности свойств азотной HNO 3 и концен­трированной серной H 2 SO 4 (конц.) кислот обуслов­лены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислите­лями будут выступать не катионы H + , а нитрат- и сульфат-ионы. Логично ожидать, что в резуль­тате таких реакций образуется не водород H 2 , а получаются другие вещества: обязательно соль и вода, а также один из продуктов восстановле­ния нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (температуры, сте­пени измельченности металла и т. д.).

Эти особенности химического поведения HNO 3 и H 2 SO 4 (конц.) наглядно иллюстрируют тезис те­ории химического строения о взаимном влиянии атомов в молекулах веществ.


Часто путают понятия летучесть и устойчи­вость (стабильность). Летучими называют кисло­ты, молекулы которых легко переходят в газо­образное состояние, то есть испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. На­пример, нелетучая, нераство­римая кремниевая кислота разлагается на воду и SiO 2 . Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не име­ют окраски. Водный раствор хромовой кислоты H 2 CrO 4 имеет желтую окраску, марганцевой кислоты HMnO 4 - малиновую.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

В Е Щ Е С Т В А

_________________________________

простые сложные

____/______ ______________/___________

металлы неметаллы оксиды гидроксиды соли

К, Ва S, P Р 2 О 5 H 2 SO 4 Cu(NO 3) 2

Na 2 O Вa(ОH) 2 Na 2 CO 3

Рассмотрим классификацию, химические свойства и методы получения сложных веществ.

ОКСИДЫ

ОКСИД – это сложное вещество, состоящее из двух элементов, один из которых кислород, находящийся в степени окисления -2.

Исключения составляют:

1) соединения кислорода и фтора – фториды: например, фторид кислорода OF 2 (степень окисления кислорода в этом соединении +2)

2) пероксиды (соединения некоторых элементов с кислородом, в которых имеется связь между атомами кислорода), например:

пероксид водорода Н 2 О 2 пероксид калия K 2 O 2

Примеры оксидов: оксид кальция - СаО, оксид бария - ВаО. Если элемент образует несколько оксидов, то в их названии в скобках указывается римской цифрой валентность элемента, например: оксид серы (IV) - SO 2 , оксид серы (VI) - SO 3 .

Все оксиды можно разделить на две большие группы: солеобразующие(образующие соли) и несолеобразующие.

Солеобразующие подразделяют на три группы: основные, амфотерные и кислотные.

О К С И Д Ы

_________________/__________________

солеобразующие несолеобразующие

СО, N 2 O, NO

↓ ↓ ↓

основные амфотерные кислотные

(им (им соответсвуют

соответствуют, кислоты)

основания)

CaO, Li 2 O ZnO, BeO, PbO P 2 O 5 , Mn 2 О 7

Cr 2 O 3 , Al 2 O 3

Неметаллы образуют кислотные оксиды, например: оксид азота (V) – N 2 O 5 , оксид углерода (IV) - CO 2 . Металлы с валентностью меньше трех, как правило, образуют основные оксиды, например: оксид натрия -Na 2 O, оксид магния – MgO; а с валентностью больше четырех – кислотные оксиды, например, оксид марганца (VII) - Mn 2 O 7 , оксид вольфрама (VI) - WO 3 .

Рассмотрим химические свойства кислотных и основных оксидов.

ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ

ОСНОВНЫХ КИСЛОТНЫХ

Взаимодействие с водой

Продуктом реакции является:

основание кислота

(если, в состав оксида P 2 O 5 + 3H 2 O à 2H 3 PO 4

входит активный металл, SiO 2 +H 2 O ≠

Li, Na, K, Rb, Cs, Fr, Ba, Ca)

CaO + H 2 O à Ca(OH) 2

2. Взаимодействие друг с другом, образуя соли CuO + SO 3 à CuSO 4

3. Взаимодействие с гидроксидами:

С растворимыми кислотами, с растворимыми основаниями

в результате реакции образуютсясоль и вода

CuO + Н 2 SO 4 àCuSO 4 + H 2 O CO 2 +Ca(OН) 2 àCaCO 3 + Н 2 О

Менее летучие оксиды

Вытесняют более летучие

из их солей :

K 2 CO 3 + SiO 2 à K 2 SiO 3 + CO 2

К числу амфотерных оксидов относят: оксиды металлов с валентностью, равной трем, например: оксид алюминия -Al 2 O 3, оксид хрома (III) - Cr 2 O 3 , оксид железа (III) - Fe 2 O 3, а также несколько исключений, в которых металл двухвалентен, например: оксид бериллия BeO, оксид цинка ZnO, оксид свинца (II) – PbO. .

Амфотерные оксиды обладают двойственной природой: они одновременно способны к реакциям, в которые вступают как основные и как кислотные оксиды

Докажем амфотерный характер оксида алюминия. Приведем уравнения реакций взаимодействия с соляной кислотой и щелочью (в водном растворе и при нагревании). При взаимодействии оксида алюминия и соляной кислоты, образуется соль - хлорид алюминия. В этом случае оксид алюминия выступает в роли основного оксида.

Al 2 O 3 + 6HCl à2AlCl 3 + 3H 2 O

как основный

В водном растворе происходит образование комплексной соли -

тетрагидроксоалюмината натрия:

Al 2 O 3 + 2NaOH + 3H 2 Oà 2Na тетрагидроксоалюминат натрия

как кислотный

При сплавлении со щелочами образуется метаалюминаты.

Представим молекулу гидроксида алюминия Al(OH) 3 в форме кислоты, т.е. на первом месте запишем все атомы водорода, на втором кислотный остаток:

H 3 AlO 3 - алюминиевая кислота

Для трехвалентных металлов из формулы кислоты вычтем 1 Н 2 О, получив метаалюминиевую кислоту:

- Н 2 О

HAlO 2 - метаалюминиевая кислота

сплавление

Al 2 O 3 +2 NaOHà 2NaAlO 2 + Н 2 О метаалюминат натрия

как кислотный

МЕТОДЫ ПОЛУЧЕНИЯ ОКСИДОВ:

1. Взаимодействие простых веществ с кислородом:

4Al + 3O 2 à 2Al 2 O 3

2. Горение или обжиг сложных веществ:

CH 4 + 2O 2 à CO 2 + 2H 2 O

2ZnS + 3O 2 à 2SO 2 + 2ZnO

3. Разложение при нагревании нерастворимых гидроксидов:

Cu(OH) 2 à CuO + H 2 O H 2 SiO 3 à SiO 2 + H 2 O

4. Разложение при нагревании средних и кислых солей:

CaCO 3 à CaO + CO 2

2КHCO 3 àK 2 CO 3 + CO 2 +H 2 O

4AgNO 3 à4Ag + 4NO 2 + O 2

ГИДРОКСИДЫ

Гидроксиды подразделяют на три группы: основания, кислоты и амфотерные гидроксиды (проявляющие свойства, как оснований, так и кислот).

ОСНОВАНИЕ – это сложное вещество, состоящее из атомов металла и одной или нескольких гидроксогрупп

(– ОН).

Например: гидроксид натрия - NaOH, гидроксид бария Ва(ОН) 2 . Количество гидроксогрупп в молекуле основания равно валентности металла.

КИСЛОТА – это сложное вещество, которое состоит из атомов водорода, способных замещаться на атомы металла, и кислотного остатка.

Например: серная кислота – H 2 SO 4 , фосфорная кислота - Н 3 РО 4 .

Валентность кислотного остатка определяется количеством атомов водорода. В химических соединениях сохраняется валентность кислотного остатка (см. таблицу 1).

ТАБЛИЦА 1 ФОРМУЛЫ НЕКОТОРЫХ КИСЛОТ И

КИСЛОТНЫХ ОСТАТКОВ

Название кислоты Формула Кислотный остаток Валентность кислотного остатка Название соли, образованной этой кислотой
Плавиковая НF F I фторид
Соляная НCl Cl I хлорид
Бромоводородная НBr Br I бромид
Йодоводородная НI I I йодид
Азотная HNO 3 NO 3 I нитрат
Азотистая HNO 2 NO 2 I нитрит
Уксусная СН 3 COOH СН 3 COO I ацетат
Серная H 2 SO 4 SO 4 II сульфат
Сернистая H 2 SO 3 SO 3 II сульфит
Сероводородная H 2 S S II сульфид
Угольная H 2 CO 3 CO 3 II карбонат
Кремневая H 2 SiO 3 SiO 3 II силикат
Фосфорная H 3 PO 4 PO 4 III фосфат

По растворимости в воде гидроксиды делятся на две группы: растворимые (например, КОН, H 2 SO 4) и нерастворимые (H 2 SiO 3 , Сu(OH) 2). Растворимые в воде основания называются щелочами.

Металла и гидроксильной группы (ОН). Например, гидроксид натрия - NaOH , гидроксид кальция - Ca (OH ) 2 , гидроксид бария - Ba (OH ) 2 и т.д.

Получение гидроксидов.

1. Реакция обмена:

CaSO 4 + 2NaOH = Ca(OH) 2 + Na 2 SO 4,

2. Электролиз водных растворов солей:

2KCl + 2H 2 O = 2KOH + H 2 + Cl 2 ,

3. Взаимодействие щелочных и щелочно-земельных металлов или их оксидов с водой:

К + 2 H 2 O = 2 KOH + H 2 ,

Химические свойства гидроксидов.

1. Гидроксиды имеют щелочной характер среды.

2. Гидроксиды растворяются в воде (щелочи) и бывают нерастворимыми. Например, KOH - растворяется в воде, а Ca (OH ) 2 - малорастворим, имеет раствор белого цвета. Металлы 1-ой группы периодической таблицы Д.И. Менделеева дают растворимые основания (гидроксиды).

3. Гидроксиды разлагаются при нагреве:

Cu (OH ) 2 = CuO + H 2 O .

4. Щелочи реагируют с кислотными и амфотерными оксидами :

2KOH + CO 2 = K 2 CO 3 + H 2 O.

5. Щелочи могут реагировать с некоторыми неметаллами при различных температурах по-разному:

NaOH + Cl 2 = NaCl + NaOCl + H 2 O (холод),

NaOH + 3 Cl 2 = 5 NaCl + NaClO 3 + 3 H 2 O (нагрев).

6. Взаимодействуют с кислотами:

KOH + HNO 3 = KNO 3 + H 2 O .

Основные классы неорганических соединений

*(Уважаемые студенты! Для изучения данной темы и выполнения тестовых заданий в качестве наглядного материала необходимо иметь таблицу Периодической системы элементов, таблицу растворимости соединений и ряд напряжений металлов.

Все вещества делятся на простые, состоящие из атомов одного элемента, и сложные, состоящие из атомов двух и более элементов. Сложные вещества принято делить на органические, к которым относятся почти все соединения углерода (кроме простейших, как, например: CO, CO 2 , H 2 CO 3 , HCN) и неорганические. К наиболее важным классам неорганических соединений относятся:

а) оксиды - бинарные соединения элемента с кислородом;

б) гидроксиды, которые подразделяются на оснóвные (основания), кислотные (кислоты) и амфотерные;

Прежде, чем приступить к характеристике классов неорганических соединений, необходимо рассмотреть понятия валентности и степени окисления.

Валентность и степень окисления

Валентность характеризует способность атома образовывать химические связи. Количественно валентность - это число связей, которые образует атом данного элемента в молекуле. В соответствии с современными представлениями о строении атомов и химической связи атомы элементов способны отдавать, присоединять электроны и образовывать общие электронные пары. Полагая, что каждая химическая связь образована парой электронов, валентность можно определить как число электронных пар, которыми атом связан с другими атомами. Валентность не имеет знака.

Степень окисления (СО ) - это условный заряд атома в молекуле, вычисленный из предположения, что молекула состоит из ионов.

Ионы - это положительно и отрицательно заряженные частицы вещества. Положительно заряженные ионы называются катионами , отрицательно - анионами . Ионы могут быть простыми, например Cl - (состоять из одного атома) или сложными, например SO 4 2- (состоять из нескольких атомов).

Если молекулы веществ состоят из ионов, то условно можно предположить, что между атомами в молекуле осуществляется чисто электростатическая связь. Это значит, что независимо от природы химической связи в молекуле, атомы более электроотрицательного элемента притягивают к себе электроны менее электроотрицательного атома.



Степень окисления обычно обозначается римскими цифрами со знаком “+” или “-” перед цифрой (например, +III), а заряд иона обозначается арабской цифрой со знаком “+” или “-” позади цифры (например, 2-).

Правила определения степени окисления элемента в соединении:

1. СО атома в простом веществе равна нулю, например, О 2 0 , С 0 , Na 0 .

2. СО фтора всегда равна -I, т.к. это самый электроотрицательный элемент.

3. СО водорода равна +I в соединениях с неметаллами (Н 2 S, NH 3) и -I в соединениях с активными металлами (LiH, CaH 2).

4. СО кислорода во всех соединениях равна -II (кроме пероксида водорода Н 2 О 2 и его производных, где степень окисления кислорода равна -I, и ОF 2 , где кислород проявляет СО +II).

5. Атомы металлов всегда имеют положительную степень окисления, равную их номеру группы в Периодической таблице, или меньшую, чем номер группы. Для первых трех групп СО металлов совпадает с номером группы, исключение составляют медь и золото, для которых более устойчивыми степенями окисления являются +II и +III соответственно.

6. Высшая (максимальная) положительная СО элемента равна номеру группы, в которой он расположен (например, Р находится в V группе А подгруппе и имеет СО +V). Это правило применимо к элементам как главных, так и побочных подгрупп. Исключение - для элементов I B и VIII А и В подгрупп, а также для фтора и кислорода.

7. Отрицательная (минимальная) СО характерна только для элементов главных подгрупп IV A - VII A, причем она равна номеру группы минус 8.

8. Сумма СО всех атомов в молекуле равна нулю, а в сложном ионе равна заряду этого иона.

Пример: Рассчитайте степень окисления хрома в соединении K 2 Cr 2 O 7 .

Решение: Обозначим СО хрома за х . Зная СО кислорода, равную -II, и СО калия +I (по номеру группы, в которой находится калий) составим уравнение:

K 2 +I Cr 2 х O 7 -II

1·2 + х ·2 + (-2)·7 = 0

Решив уравнение, получим х = 6. Следовательно, СО атома хрома равна +VI.

Оксиды

Оксиды - это соединения элементов с кислородом. Степень окисления кислорода в оксидах -II.

Составление формул оксидов

Формула любого оксида будет иметь вид Э 2 О х, где х - степень окисления элемента, образующего оксид (четные индексы следует сократить на два, например, пишут не S 2 O 6 , а SO 3). Для составления формулы оксида необходимо знать, в какой группе Периодической системы находится элемент. Максимальная СО элемента равна номеру группы. В соответствии с этим формула высшего оксида любого элемента в зависимости от номера группы будет иметь вид:

Задание : Составьте формулы высших оксидов марганца и фосфора.

Решение : Марганец расположен в VII B подгруппе Периодической системы, значит его высшая СО равна +VII. Формула высшего оксида будет иметь вид Mn 2 O 7 .

Фосфор расположен в V A подгруппе, отсюда формула его высшего оксида имеет вид Р 2 О 5 .

Если элемент находится не в высшей степени окисления, необходимо знать эту степень окисления. Например, сера, находясь в VI A подгруппе, может иметь оксид, в котором она проявляет СО равную +IV. Формула оксида серы (+IV) будет иметь вид SO 2 .

Номенклатура оксидов

В соответствии с Международной номенклатурой (IUPAC) название оксидов образуется из слова “оксид” и названия элемента в родительном падеже.

Например: СаО - оксид (чего?) кальция

Н 2 О - оксид водорода

SiO 2 - оксид кремния

CО элемента, образующего оксид, можно не указывать, если он проявляет только одну СО, например:

Al 2 O 3 - оксид алюминия;

MgO - оксид магния

Если элемент имеет несколько степеней окисления, необходимо их указывать:

СuO - оксид меди (II), Сu 2 O - оксид меди (I)

N 2 O 3 - оксид азота (III), NO - оксид азота (II)

Сохранились и часто употребляются старые названия оксидов с указанием числа атомов кислорода в оксиде. При этом используются греческие числительные- моно-, ди-, три-, тетра-, пента-, гекса- и т.д.

Например:

SO 2 - диоксид серы, SO 3 - триоксид серы

NO - монооксид азота

В технической литературе, а также в промышленности широко употребляются тривиальные или технические названия оксидов, например:

CaO - негашеная известь, Al 2 O 3 - глинозем

СО 2 - углекислый газ, СО - угарный газ

SiO 2 - кремнезем, SO 2 - сернистый газ

Методы получения оксидов

а) Непосредственное взаимодействие элемента с кислородом в надлежащих условиях:

Al + O 2 → Al 2 O 3 ;(~ 700 °С)

Cu + O 2 → CuO(< 200 °С)

S + O 2 → SO 2

Данным способом нельзя получить оксиды инертных газов, галогенов, “благородных” металлов.

б) Термическое разложение оснований (кроме оснований щелочных и щелочноземельных металлов):

Cu(OH) 2 → CuO + H 2 O(> 200 °С)

Fe(OH) 3 → Fe 2 O 3 + H 2 O(~ 500-700 °С)

в) Термическое разложение некоторых кислот:

H 2 SiO 3 → SiO 2 + H 2 O(1000°)

H 2 CO 3 → CO 2 + H 2 O(кипячение)

г) Термическое разложение солей:

СаСО 3 → СаО + СО 2 (900° C)

FeCO 3 → FeO + CO 2 (490°)

Классификация оксидов

По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие (безразличные) оксиды не образуют ни кислот, ни оснований (не взаимодействуют ни с кислотами, ни с основаниями, ни с водой). К ним относятся: оксид углерода (II) - CO, оксид азота (I) - N 2 O, оксид азота (II) - NO и некоторые другие.

Солеобразующие оксиды подразделяются на оснóвные, кислотные и амфотерные.

Оснóвными называют те оксиды, которым соответствуют гидроксиды, называемые основаниями. Это оксиды большинства металлов в низшей степени окисления (Li 2 O, Na 2 O, MgO, CaO, Ag 2 O, Cu 2 O, CdO, FeO, NiO, V 2 O 3 и др.).

Присоединяя (прямо или косвенно) воду, основные оксиды образуют основные гидроксиды (основания). Например, оксиду меди (II) - СuO соответствует гидроксид меди (II) - Cu(OH) 2 , оксиду BaO - гидроксид бария - Ba(OH) 2 .

Важно помнить, что СО элемента в оксиде и соответствующем ему гидроксиде одинакова!

Оснoвные оксиды взаимодействуют с кислотами или кислотными оксидами, образуя соли.

Кислотными называют те оксиды, которым соответствуют кислотные гидроксиды, называемые кислотами . Кислотные оксиды образуют неметаллы и некоторые металлы в высших степенях окисления (N 2 O 5 , SO 3 , SiO 2 , CrO 3 , Mn 2 O 7 и др.).

Присоединяя воду (прямо или косвенно), кислотные оксиды образуют кислоты. Например, оксиду азота (III) - N 2 O 3 соответствует азотистая кислота HNO 2 , оксиду хрома (VI) - CrO 3 - хромовая кислота H 2 CrO 4 .

Кислотные оксиды взаимодействуют с основаниями или основными оксидами, образуя соли.

Кислотные оксиды можно рассматривать как продукты “отнятия” воды от кислот и называть их ангидридами (т.е. безводными). Например, SO 3 - ангидрид серной кислоты H 2 SO 4 (или просто серный ангидрид), P 2 O 5 - ангидрид ортофосфорной кислоты H 3 PO 4 (или просто фосфорный ангидрид).

Важно помнить, что СО элемента в оксиде и соответствующей ему кислоте, а также в анионе этой кислоты одинакова!

Амфотерными называются те оксиды, которым могут соответствовать и кислоты, и основания. К ним относятся BeO, ZnO, Al 2 O 3 , SnO, SnO 2 , Cr 2 O 3 и оксиды некоторых других металлов, находящихся в промежуточных степенях окисления. Кислотные и оснóвные свойства у этих оксидов выражены в различной степени. Например, у оксидов алюминия и цинка кислотные и основные свойства выражены примерно одинаково, у Fe 2 O 3 преобладают основные свойства, у PbO 2 преобладают кислотные свойства.

Амфотерные оксиды образуют соли при взаимодействии как с кислотами, так и с основаниями.

Химические свойства оксидов

Химические свойства оксидов (и соответствующих им гидроксидов) подчиняются принципу кислотно-основного взаимодействия, согласно которому соединения, проявляющие кислотные свойства, реагируют с соединениями, обладающими основными свойствами.

Основные оксиды взаимодействуют:

а) с кислотами:

CuO + H 2 SO 4 → H 2 O + CuSO 4 ;

BaO + H 3 PO 4 → H 2 O + Ba 3 (PO 4) 2 ;

б) с кислотными оксидами:

CuO + SO 2 → CuSO 3 ;

BaO + N 2 O 5 → Ba(NO 3) 2 ;

в) оксиды щелочных и щелочноземельных металлов могут растворяться в воде:

Na 2 O + H 2 O → NaOH;

BaO + H 2 O → Ba(OH) 2 .

Кислотные оксиды взаимодействуют:

а) с основаниями:

N 2 O 3 + NaOH → H 2 O + NaNO 2 ;

CO 2 + Fe(OH) 2 → H 2 O + FeCO 3 ;

б) с основными оксидами:

SO 2 + CaO → CaSO 3 ;

SiO 2 + Na 2 O → Na 2 SiO 3 ;

в) могут (но не все) растворяться в воде:

SO 3 + H 2 O → H 2 SO 4 ;

P 2 O 3 + H 2 O → H 3 PO 3 .

Амфотерные оксиды могут взаимодействовать:

а) c кислотами:

ZnO + H 2 SO 4 → H 2 O + ZnSO 4 ;

Al 2 O 3 + H 2 SO 4 → H 2 O + Al 2 (SO 4) 3 ;

б) с кислотными оксидами:

ZnO + SO 3 → ZnSO 4 ;

Al 2 O 3 + SO 3 → Al 2 (SO 4) 3 ;

в) с основаниями:

ZnO + NaOH + H 2 O → Na 2 ;

Al 2 O 3 + NaOH + H 2 O → Na 3 ;

г) c основными оксидами:

ZnO + Na 2 O → Na 2 ZnO 2 ;

Al 2 O 3 + Na 2 O → NaAlO 2 .

В первых двух случаях амфотерные оксиды проявляют свойства оснóвных оксидов, в двух последних случаях - свойства кислотных оксидов.

Гидроксиды

Гидроксиды представляют собой гидраты оксидов с общей формулой m Э 2 О х ·n H 2 O (n и m - небольшие целые числа, х - валентность элемента). Гидроксиды отличаются от оксидов по составу только наличием воды в их молекуле. По своим химическим свойствам гидроксиды делятся на основные (основания), кислотные (кислоты) и амфотерные .

Основания (основные гидроксиды)

Основанием называется соединение элемента с одной, двумя, тремя и реже четырьмя гидроксильными группами с общей формулой Э(ОН) х . В качестве элемента всегда выступают металлы главных или побочных подгрупп.

Растворимые основания - это электролиты, которые в водном растворе диссоциируют (распадаются на ионы) с образованием анионов гидроксильной группы ОН ‾ и катиона металла. Например:

KOH = K + + OH ‾ ;

Ba(OH) 2 = Ba 2+ + 2OH ‾

За счёт наличия в водном растворе гидроксильных ионов ОН ‾ основания проявляют щелочную реакцию среды.

Составление формулы основания

Чтобы составить формулу основания, необходимо написать символ металла и, зная его степень окисления, приписать рядом соответствующее число гидроксильных групп. Например: иону Mg +II соответствует основание Mg(OH) 2 , иону Fe +III соответствует основание Fe(OH) 3 и т.д. Для первых трех групп главных подгрупп Периодической системы степень окисления металлов равна номеру группы, поэтому формула основания будет ЭОН (для металлов I A подгруппы), Э(OH) 2 (для металлов II A подгруппы), Э(ОН) 3 (для металлов III A подгруппы). Для других групп (в основном побочных подгрупп) необходимо знать степень окисления элемента, т.к. она может не совпадать с номером группы.

Номенклатура оснований

Названия оснований образуются из слова “гидроксид” и названия элемента в родительном падеже, после которого римскими цифрами в скобках указывается степень окисления элемента, если это необходимо. Например: KOH - гидроксид калия, Fe(OH) 2 - гидроксид железа (II), Fe(OH) 3 - гидроксид железа (III) и т.д.

Существуют технические названия некоторых оснований: NaOH - едкий натр, КОН - едкое кали, Са(ОН) 2 - гашеная известь.

Методы получения оснований

а) Растворение в воде оснoвных оксидов (в воде растворимы только оксиды щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → NaOH;

CaO + H 2 O → Ca(OH) 2 ;

б) Взаимодействие щелочных и щелочноземельных металлов с водой:

Na + H 2 O → H 2 + NaOH;

Ca + H 2 O → H 2 + Ca(OH) 2 ;

в) Вытеснение сильным основанием слабого из соли:

NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + FeCl 3 → Fe(OH) 3 ↓ + BaCl 2 .

Классификация оснований

а) По количеству гидроксильных групп основания делятся на одно- и многокислотные: ЭОН, Э(ОН) 2 , Э(ОН) 3 , Э(ОН) 4 . Индекс х в формуле основания Э(ОН) х носит название “кислотность” основания.

б) Основания могут быть растворимыми и нерастворимыми в воде. Большинство оснований нерастворимы в воде. Хорошо растворимые в воде основания образуют элементы I A подгруппы - Li, Na, K, Rb, Cs, Fr (щелочные металлы). Они называются щелочами . Кроме того, растворимым основанием является гидрат аммиака NH 3 ·H 2 O, или гидроксид аммония NH 4 OH, но он не относится к щелочам. Меньшей растворимостью обладают гидроксиды Ca, Sr, Ba (щелочноземельных металлов), причем растворимость их увеличивается по группе сверху вниз: Ba(OH) 2 - наиболее растворимое основание.

в) По способности диссоциировать в растворе на ионы основания делятся на сильные и слабые . Сильными основаниями являются гидроксиды щелочных и щелочноземельных металлов - они диссоциируют на ионы полностью. Остальные основания являются основаниями средней силы или слабыми. Гидрат аммиака также является слабым основанием.

Химические свойства оснований

Основания взаимодействуют с соединениями, проявляющими кислотные свойства:

а) Взаимодействуют с кислотами с образованием соли и воды. Эта реакция называется реакцией нейтрализации:

Ca(OH) 2 + H 2 SO 4 → CaSO 4 + H 2 O;

б) Взаимодействуют с кислотными или амфотерными оксидами (эти реакции также можно отнести к реакциям нейтрализации или кислотно-основного взаимодействия):

Cu(OH) 2 + SO 2 → H 2 O + CuSO 4 ;

NaOH + ZnO → Na 2 ZnO 2 + H 2 O;

в) Взаимодействуют с кислыми солями (кислые соли содержат атом водорода в анионе кислоты);

Ca(OH) 2 + Ca(HCO 3) 2 → CaCO 3 + H 2 O;

NaOH + Ca(HSO 4) 2 → CaSO 4 + Na 2 SO 4 + H 2 O;

г) Сильные основания могут вытеснять слабые из солей:

NaOH + MnCl 2 → Mn(OH) 2 ↓ + NaCl;

Ba(OH) 2 + Mg(NO 3) 2 → Mg(OH) 2 ↓ + Ba(NO 3) 2 ;

д) нерастворимые в воде основания при нагревании разлагаются на оксид и воду.