Основы. Клонирование целых животных.

Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом - одно из существенных их отличий от клеток растений. Именно здесь главное препятствие для клонирования взрослых позвоночных животных. Методы клонирования целых животных до сих пор не доведены до стадии практического («промышленного») применения.

Наиболее удачными являются эксперименты по клонированию животных из эмбриональных недифференцированных клеток, не утративших тотипотентных свойств, однако есть положительные результаты и со зрелыми клетками.

Процесс клонирования протекает следующим образом - ядро соматической клетки пересаживают в лишенную ядра (энуклеированную) яйцеклетку и имплантируют ее в организм матери (если это животное, требующее вынашивания).

Энуклеация традиционно проводится микрохирургически или путем разрушения ядра ультрафиолетом, пересадка производится с помощью тонкой стеклянной пипетки или электрослиянием. В последнее время ученые из датского Института сельскохозяйственных наук разработали недорогую технологию клонирования, которая гораздо проще используемой ныне.

По новой технологии, яйцеклетки разрезаются пополам, и половинки с ядрами выбрасываются. Выбирается пара оставшихся пустых половинок, которые «склеиваются» в одну яйцеклетку после добавления нового ядра. Самая дорогая часть оборудования, которую использовали в этом эксперименте, -- машина для «сварки» клеток -- стоит всего лишь $3,5 тысячи. Технология может быть полностью автоматизирована и поставлена «на поток».

Успешность пересадки зависит от вида животного (амфибий клонируют успешнее, чем млекопитающих), методики пересадки и степени дифференцировки клетки-донора. Так, ещё Бриггс и Кинг в первых опытах на амфибиях установили, что если брать ядра из клеток зародыша на ранней стадии его развития - бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. Эти результаты позже были подтверждены и в других работах.

Гердон, использовавший в качестве доноров специализированные клетки эпителия, получил следующие результаты: в большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. 6,5% из этих эмбрионов достигали стадии бластулы, 2,5% - стадии головастика и только 1% развился в половозрелых особей. Однако, появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов.

Позже Гердон модифицировал эксперимент. Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки (такая процедура называется «серийной пересадкой» в отличие от «первичной пересадки»). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер.

Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития, хотя и клоны дифференцированных клеток удавалось «доводить» до поздних стадий, особенно при использовании метода серийных пересадок.

Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.

У млекопитающих в качестве доноров используются малодифференцированные стволовые клетки или клетки ранних эмбрионов. Работа методически оказалась довольно трудной, прежде всего потому, что объем яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у амфибий. Однако эти трудности были успешно преодолены. Экспериментаторы научились микрохирургически удалять пронуклеусы из зигот (оплодотворенных яйцеклеток) млекопитающих и пересаживать в них клеточные.

Опыты на мышах закончились полной неудачей - клоны гибли на стадии бластоцисты, что связано вероятно, с очень ранней активацией генома зародыша - уже на стадии 2-х клеток. У других млекопитающих, в частности, у кроликов, овец и крупного рогатого скота, активация первой группы генов в эмбриогенезе происходит позднее, на 8-16-клеточной стадии. Возможно поэтому первые значительные успехи в клонировании эмбрионов были достигнуты на других видах млекопитающих, а не на мышах.

Для кроликов (Стик и Робл, 1989) был получен результат - 3,7% реконструированных яйцеклеток развились до нормальных животных.

Работа с реконструированными яйцеклетками крупных домашних животных, коров или овец, идет несколько по-другому. Их сначала культивируют не in vitro, a in vivo - в перевязанном яйцеводе овцы - промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента - коровы или овцы соответственно, где их развитие происходит до рождения детеныша. По данным одних авторов реконструированные зародыши лучше развиваются в яйцеклетке, чем в культуральной среде, хотя некоторые исследователи получили неплохие результаты и при культивировании.

Таким образом, была в целом решена проблема клонирования крупного рогатого скота. Например, в одном из экспериментов, 92 яйцеклетки из 463 развились до взрослых коров.

Позднее были получены клоны овец. В 1993-1995 годах, группа исследователей под руководством Уилмута получила клон овец - 5 идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургически эмбриональный диск из 9-дневного овечьего эмбриона (бластоцисты) и культивировали клетки in vitro в течение многих пассажей (по крайней мере до 25). Сначала клеточная культура напоминала культуру стволовых недифференцированных эмбриональных клеток, но вскоре, после 2-3-х пассажей, клетки становились уплотненными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4.

Эта работа, особенно в части культуры эмбриональных клеток, - значительное достижение в клонировании млекопитающих, хотя она и не вызвала столь шумного интереса, как статья того же Уилмута с соавторами, опубликованная в начале 1997 года, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяет предыдущее исследование, но в ней ученые использовали не только эмбриональные, но еще и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от шестилетней овцы породы финн дорcет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Деление клеток всех трех типов останавливали на стадии G0 и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые и in vitro в химически определенной среде. Коэффициент выхода морул или бластоцист при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе (поэтому, видимо, нет строгой необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro. Однако для полной уверенности в этом нужны дополнительные данные).

Перспективным направлением в технологии клонирования животных является изучение генетических механизмов развития и дифференцировки клеток. Так, Рудольф Яниш из Whitehead Institute обнаружил, что 70-80 генов, которые обычно активизируются в развивающихся мышиных эмбрионах, у клонов оказываются либо неактивны, либо демонстрируют пониженную активность. Хотя непонятно, что же делают эти гены, однозначно установлено, что они включаются одновременно с еще одним геном, Oct4. Этот ген, в свою очередь, дает эмбрионам возможность создавать плюрипотентные клетки - то есть клетки, которые могут превратиться в любую ткань. Возможно, что часть активизирующихся одновременно с этим генов также задействуется в этом процессе. Теперь ученым предстоит выяснить, что заставляет эти гены молчать. В случае удачи наука сделает важный шаг вперед в разработке методологии клонирования.

Клонирование животных: применение и перспективы.

Клонирование в животноводстве.

Учитывая трудности в клонировании животных, говорить о широком практическом применении клонов в животноводстве рано. Однако перспективы у этого направления есть.

Клонирование ценных трансгенных животных может быстро и экономично обеспечить человечество новыми лекарственными препаратами, содержащимися в молоке, специально полученных для этого генноинженерными методами овец, коз или коров.

Появилось сообщение, что ученым из шотландской фирмы PPL Therapeutics, того самого, где была клонирована Долли, удалось получить успешные клоны овечек с измененной ДНК. Был внедрен ген, который добавляет в молоко овец фермент, используемый в современной фармакологии для лечения наследственной эмфиземы легких.

Клонирование высокопродуктивных домашних животных, в частности, молочных коров, может произвести буквально революцию в сельском хозяйстве, так как только этим методом можно создать не отдельные экземпляры, а целые стада элитных коров рекордисток. Это же относится к размножению выдающихся спортивных лошадей, ценных пушных зверей, сохранению редких и исчезающих животных в природных популяциях и т.д. Беспрецедентный по своему масштабу эксперимент по массовому клонированию крупного рогатого скота недавно начался в Китае. Как сообщает местная печать, в Синьцзян-Уйгурском автономном районе на северо-западе страны в этом году ожидается появление от 20 до 50 клонированных телят.

Проект ведется компанией «Цзиньню» и является крупнейшим в своем роде в мире. В нем также участвуют Австралия, Канада, США и Великобритания и ряд других стран. Китайские ученые полагают, что клонирование станет важным шагом в развитии животноводства и улучшении племенной работы.

Внедрение в практику методов межвидового переноса ядер может открыть невиданные перспективы для спасения находящихся на грани исчезновения видов животных. Было зафиксировано, что энуклеированные яйцеклетки крупного рогатого скота обеспечивают реализацию генетического материала донорских ядер из соматических клеток человека даже до более продвинутых эмбриональных стадий. Это является свидетельством того, что даже перенос ядер в ооциты далеких в эволюционном отношении видов обеспечивает их частичное репрограммирование. А может ли быть так, что трансплантация ядер в энуклеированные яйцеклетки близких видов приведет к получению полноценного здорового потомства?

Терапевтическое клонирование.

Новейшие технологии в области клонирования и создания эмбриональных стволовых клеток открывают огромные возможности для лечения многих заболеваний, связанных с дегенерацией определенных типов клеток, потерей функций тканей и целых органов. Около 16 млн. человек во всем мире страдают нейродегенеративными заболеваниями, такими как болезнь Альцгеймера и Паркинсона, свыше 120 млн. - диабетом и миллионы - артритами, СПИДом, инфарктами и другими заболеваниями, которые могут быть излечены с помощью применения клеточных трансплантатов.

По самым скромным подсчетам десятки наиболее распространенных заболеваний могут быть вылечены с внедрением клеточной терапии. Методы терапевтического клонирования позволяют избежать иммунного отторжения трансплантатов, поскольку ЭС клетки несут генетическую информацию донора ядер. Низкая эффективность трансплантации ядер не важна для осуществления клеточной терапии, так как для получения линии ЭС клеток достаточно всего одного или нескольких предимплантационных эмбрионов. Кроме того, сейчас рассматривается вопрос об использовании в качестве цитопластов энуклеированных яйцеклеток животных, например, крупного рогатого скота, которые поддерживают реализацию генетического материала ядра человеческой соматической клетки до стадии 5-дневного эмбриона.

Одной из перспективных сфер применения клонирования может оказаться ксенотрансплантация, то есть межвидовая трансплантация тканей и органов. Некоторыми компаниями ведется работа по созданию линии свиней с инактивированным геном альфа-1,3-галактозилтрансферазы. Этот ген кодирует фермент, участвующий в синтезе поверхностных антигенов клеток свиней, которые обусловливают немедленное отторжение трансплантатов у приматов. Технология клонирования с использованием генетически модифицированных культур клеток в качестве доноров ядер значительно упростит процесс создания такой линии.

Важный результат получен американскими учеными, которым удалось разработать метод выращивания новых костей в позвоночнике крыс.

В проведенных экспериментах ученые работали со стволовыми клетками. Они модифицировали их так, что стволовые клетки костного мозга стали экспрессировать белок ВМР-9, который способствует росту новых костей. Затем модифицированные клетки были инъецированы в одну сторону позвоночника крыс, в то время как в другую ученые инъецировали стволовые клетки, содержащие инактивированный ген.

Через 8 недель после начала эксперимента был зафиксирован рост костей лишь на той стороне спины, которая содержала модифицированные стволовые клетки. При этом вновь образованные кости выглядели абсолютно нормально.

Эта методика пока не была опробована на людях, однако исследователи полагают, что этот метод генной терапии, который включает в себя этап работы с клетками вне организма, является многообещающим для лечения заболеваний костей, а также показателем перспективности терапевтического клонирования вообще.

Не менее интересные результаты получили российские ученые. Им удалось клонировать из стволовых клеток человека кардиомиоциты.

КЛОНИРОВАНИЕ
в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.
ДНК. Говоря о клонировании, происходящем в природе или в лаборатории, необходимо представлять себе, что вся генетическая, т.е. наследственная, информация, необходимая для роста, развития, обмена веществ и размножения организмов, передается от родителей потомству в форме дезоксирибонуклеиновой кислоты (ДНК).
См. также
НАСЛЕДСТВЕННОСТЬ ;
НУКЛЕИНОВЫЕ КИСЛОТЫ . ДНК упакована в хромосомах, которых в клетке бывает от одной у некоторых одноклеточных до нескольких десятков у высших растений и животных. Генетического материала, находящегося всего в одной хромосоме крошечного одноклеточного существа вроде амебы, достаточно для осуществления всех его жизненных функций. Однако сложно устроенному животному для этого необходимо примерно 100 000 различных генов.
Прокариоты. Прокариоты - это самые простые по строению одноклеточные организмы типа бактерий, в клетках которых нет оформленного ядра и многих органелл, свойственных клеткам эукариотов, т.е. эволюционно более продвинутых организмов. Обычно прокариоты размножаются бесполым путем, а именно простым делением клетки надвое. В результате они образуют клоны.
См. также
КЛЕТКА ;
РАЗМНОЖЕНИЕ .
Эукариоты и многоклеточные животные. Эукариоты характеризуются тем, что их клетки обладают многочисленными органеллами и ядром, в котором заключены хромосомы, т.е. ДНК. Некоторые из этих организмов - одноклеточные, но в большинстве случаев это многоклеточные формы, состоящие из многих различных по структуре и функциям эукариотных клеток. Некоторые простейшие, например амебы и парамеции, способны быстро размножаться путем деления надвое. У многоклеточных животных произошла специализация клеток и сформировались половые клетки (гаметы), предназначенные для полового размножения. У низкоорганизованных многоклеточных встречается как половое, так и бесполое размножение. С усложнением и увеличением подвижности животных половое размножение стало преобладать. Оно обеспечивает сочетание в потомстве признаков обоих родителей, т.е. исключает образование клонов.
Партеногенез. Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также
ЯЙЦО ;
РАЗМНОЖЕНИЕ .
Размножение растений и получение рассады. У растений известны различные формы бесполого размножения, обычно называемого вегетативным. Самостоятельный организм может развиться у них из частей листьев, стеблей и корней. Если эти части получены от одного растения, то образуется клон. Для вегетативного размножения у многих видов используются специальные структуры, к которым относятся, например, подземные корневища у золотой розги, надземные столоны ("усы") у земляники, луковицы у чеснока, клубни у картофеля и клубнелуковицы у гладиолусов. Таким способом размножают не только травянистые, но и многие древесно-кустарниковые виды. К относительно новым методам коммерческого клонирования некоторых растений относится выращивание их из культуры ткани. Среди сельскохозяйственных культур вегетативно размножают, например, бананы, ананасы, виноград и землянику. Особый способ клонирования, называемый прививкой, применяют в случае плодовых деревьев, в частности пекана, яблони и персика. Черенки, вырезанные из ветвей ценного в хозяйственном отношении экземпляра (привои), приращивают к укорененным растениям (подвоям) того же вида, а иногда и другого - близкого таксономически. Привой нормально растет и приносит плоды, не уступающие по качеству тем, что развиваются на материнском дереве.
Лабораторное клонирование антител. Все позвоночные для защиты от инфекций вырабатывают особые белки - антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.
Клонирование генов. Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них - полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут
(см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ).
Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.
Клонирование млекопитающих. Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов - процесс гораздо более сложный, чем заживление раны. Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.
Первые опыты. Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие "приемные матери" родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.
Клонирование взрослых млекопитающих. По мере роста и развития животного соответствующие его гены "включаются" и "выключаются" в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшее нарушение здесь чревато болезнью, а то и гибелью всей особи. Следовательно, если вырезать кусочек, скажем, уже сформировавшегося подбородка, нос из него не разовьется. Правда, клетки могут терять специализацию (дедифференцироваться), что наблюдается при возникновении раковых опухолей. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую теоретически, но крайне сложную задачу, которую многие специалисты считали неразрешимой. В 1997 шотландский эмбриолог Ян Уилмат со своими сотрудниками сообщил об успешном клонировании ягненка из дифференцированной клетки молочной железы шестилетней овцы. Культивируя клетки этого типа на т.н. минимальной (содержащей лишь минимум необходимых для поддержания жизни веществ) питательной среде, не позволявшей им выполнять свои "взрослые" функции, удалось добиться их дедифференцировки до эмбрионального состояния. Затем такую клетку слили с энуклеированной (лишенной ядра) яйцеклеткой другой овцы и имплантировали начавший развитие эмбрион в матку третьей самки. В результате исходная клетка молочной железы повторила и самостоятельно отрегулировала все этапы, которые в норме проходит оплодотворенное яйцо, превращаясь во многие миллиарды специализированных клеток взрослого млекопитающего. Через некоторое время эти исследователи сообщили о клонировании овцы с введенным в нее человеческим геном, а специалисты из США заявили о создании клонов взрослых коров. Важно подчеркнуть, что особи получаемых описанным способом клонов не достигают того уровня идентичности друг другу, который свойствен однояйцовым близнецам. Во-первых, развитие их происходит в разных ооцитах, каждый из которых сохраняет некоторое количество собственной ДНК в митохондриях (органеллах дыхания). Во-вторых, эмбрионы вынашиваются различными "приемными матерями", и, наконец, после рождения каждый детеныш попадает в условия среды, неизбежно являющиеся в той или иной степени уникальными.
Открывающиеся перспективы. Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. "исправления" аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей. О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую "зародышевую плазму" во всем ее разнообразии.

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "КЛОНИРОВАНИЕ" в других словарях:

    - [Словарь иностранных слов русского языка

    клонирование - КЛОНИРОВАНИЕ процесс создания генетически идентичных копий живых организмов (или их фрагментов: молекул, клеток, тканей, органов и т.д.). Термин «К.» происходит от греческого слова klon, что означает веточка, побег, черенок. С процессом… … Энциклопедия эпистемологии и философии науки

    Сущ., кол во синонимов: 1 воспроизведение (38) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    клонирование - Процесс создания устройства, которое с точки зрения пользователей не отличимо от широко известного устройства. Благодаря клонированию выпускаются компьютеры различных производителей, которые используют программное обеспечение и внешние устройства … Справочник технического переводчика

    В Викисловаре … Википедия

    Воспроизведение генетически однородных организмов (клеток) путём бесполого (вегетативного) размножения. При клонировании исходный организм (или клетка) служит родоначальником клона – ряда организмов (клеток), повторяющих из поколения в поколение… … Биологический энциклопедический словарь

Введение

Последние десятилетия XX века ознаменовались бурным развитием одной из главных ветвей биологической науки - молекулярной генетики. Уже в начале 70-х годов ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных. Возникло новое направление генетики - генетическая инженерия. На основе ее методологии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы (ГМО). Появилась возможность генной терапии некоторых заболеваний человека, а последнее десятилетие XX века ознаменовалось еще одним важным событием - достигнут огромный прогресс в клонировании животных из соматических клеток.

Термин "клон" происходит от греческого слова "klon", что означает - веточка, побег, черенок, и имеет отношение прежде всего к вегетативному размножению. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. Начиная с 70-х годов нашего столетия для клонирования растений стали широко использовать небольшие группы и даже отдельные соматические (неполовые) клетки

Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации - дифференцировки - клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.



При вегетативном размножении и при клонировании гены не распределяются по потомкам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений. Все организмы, входящие в состав определенного клона, имеют одинаковый набор генов и фенотипически не различаются между собой. Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом - одно из существенных их отличий от клеток растений.

Цель работы : разобраться с понятием «клонирование» в различных сферах и определить, что можно ожидать от него.

Понятие и сущность клонирования

Одним из ярких примеров достижений ученых, с проблемностью которых человечеству ещё не раз придется столкнуться - является клонирование.

Клонирование – это процесс, в ходе которого живое существо производится от единственной клетки, взятой от другого живого существа.

Клонирование обычно определяется, как производство клеток или организмов с теми же нуклеарными геномами, что и у другой клетки или организма. Соответственно, путём клонирования можно создать любой живой организм или его часть, идентичный уже существующему или существовавшему, если сохранилась информация о его нуклеарных геномах.

Клон – (от греч. сlon – отпрыск, ветвь) это группа клеток или организмов, происшедших от общего предка путём бесполого размножения и являющихся генетически идентичными. Примером клона можно назвать группу бактериальных клеток, образовавшихся в результате деления исходной клетки, потомков морской звезды, регенерировавших из частей разделённого материнского организма, клоном также являются все кусты или деревья, полученные путём вегетативного размножения. Однако вот млекопитающим способность размножаться путём клонирования природа не "предусмотрела". Высокий уровень дифференциации клеток как бы "обратной стороной медали" обозначает утрату ними способности давать начало новому организму. Однако, как показала практика, ядро даже дифференцированной клетки сохраняет все потенции, необходимые для того, чтобы дать начало новому организму.

Суть клонирования проста: требуется две клетки – одна, которая будет донором ядра и хозяин которой клонируется, и яйцеклетка, развитием которой и будет управлять подсаживаемое ядро. Собственное ядро яйцеклетки должно быть уничтожено (клетка энуклеирована). Опыт также показывает, что для клонирования лучше, если яйцеклетка не оплодотворена. Клетку-донор тем или иным способом заставляют перейти в так называемую G0-фазу или стадию покоя. После этого её ядро либо путём пересадки, либо слиянием клеток доставляется в яйцеклетку. Последняя стимулируется к делению и приступает к формированию эмбриона. Последний подсаживается в матку так называемой суррогатной матери, где в случае удачного развития формирует новый организм, являющийся генетически идентичным тому, который был донором ядра.

Сейчас наиболее известны два варианта данной методики – так называемая Рослинская и Гонолульская технологии. Первая была использована при клонировании овцы Долли Яном Вильмутом и Китом Кембеллом из Рослинского института в 1996, а вторая – группой учёных из Университета Гавайи в 1998, в результате чего было получено полсотни клонов мыши.

Ещё несколько десятилетий назад клонирование являлось скорее предметом обсуждения писателей-фантастов, нежели научных дискуссий или общественно-политических дебатов. Стремительное развитие генной инженерии и просто таки расцвет биотехнологий в 1990-е годы создали все условия к практической возможности клонирования живых существ. Научно-технический прогресс, как часто это бывает, воплотил всё в реальность.

История клонирования

Началось все с открытия яйцеклетки в 1883 году немецким цитологом О.Хертвигом, когда было установлено, что в процессе оплодотворения равноправно участвуют мужские и женские клетки.

Первые шаги к клонированию животных были предприняты около ста лет назад зоологом Московского Университета Александром Тихомировым, открывшим на примере тутового шелкопряда партеногенез: развитие без оплодотворения в результате химических и физических воздействий. Однако партеногенетические эмбрионы шелкопряда были нежизнеспособны.

В 30-е годы XX-го века академиком Борисом Астауровым проводилась серия исследований, в результате которых было подобрано термическое воздействие, способное одновременно активировать неоплодотворенное яйцо к развитию и блокировать процесс превращения ядра яйцеклетки с двойным хромосомным набором в ядро с одинарным набором. Таким образом, были получены первые генетические копии. Увы, и такое потомство отличалось низкой жизнеспособностью. В дальнейшем этот метод был усовершенствован академиком Владимиром Струнниковым, работы которого по клонированию шелкопряда получили, в итоге, мировую известность.

История клонирования позвоночных начинается в 40-е годы XX-го века, когда российский эмбриолог, профессор Георгий Лопашов на лягушках разработал метод пересадки ядер, на котором основаны все современные эксперименты по клонированию. Метод состоит в выделении ядра соматической клетки и имплантации его в обезъядренную (энуклеированную) яйцеклетку. А в 50-е годы американские эмбриологи Р.Бриггс и Т.Кинг, которым и достались первые лавры, выполнили сходные опыты по переносу ядра клетки в гигантские икринки африканской шпорцевой лягушки «ксенопус», из которых успешно развились головастики. Затем в 1962 году зоолог Оксфордского университета Дж. Гердон существенно продвинул эти результаты, когда в опытах с южноафриканскими жабами стал использовать в качестве донора ядер не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника подросшего головастика. Выживало не более двух процентов клонированного потомства, да и у выживших наблюдались различные дефекты. Однако это был огромный шаг вперед по пути клонирования.

Клонирование растений

Клонирование растений, в отличие от клонирования животных, является обычным процессом, с которым сталкивается любой цветовод или садовод. Ведь часто растение размножают отростками, черенками, усиками и т.д. Это и есть пример клонирования. Природа клонирует организмы миллиарды лет. Например, когда куст клубники дает побег, новое растение вырастает на месте, где этот побег укоренился. Новое растение, и есть клон. Такое же клонирование происходит с травой, картофелем и луком. Люди клонировали растения одним или другим способом тысячи лет. Когда вы берете лист, отрезанный от растения, и выращиваете из него новое растение (вегетативный способ), вы клонируете изначальное растение, потому что у нового растения такой же генетический набор, как и у растения – донора. Следовательно, клонированием можно считать любой процесс вегетативного размножения у растений. Процесс этот у растений значительно более простой, чем клонирование животных. Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации - дифференцировки - клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму.

Для клонирования растительную клетку достаточно изолировать из целого растения и поместить на питательную среду, содержащую солевые компоненты, витамины, гормоны и источник углеводов, она начинает делиться и образует культуру каллуса. В дальнейшем каллусы можно размножить и получить неограниченное количество биомассы. Основная трудность, с которой сразу же приходится сталкиваться исследователю - это то, что клетки в искусственных условиях начинают бурно делиться и расти, но при этом часто не в состоянии продуцировать вторичные метаболиты, т.е. биологически активные вещества растений. Клеточная инженерия позволяет получать гибридные штаммы, клетки или даже целые растения (растения-регенераты), скрещивая между собой филогенетически (т.е. эволюционно) отдаленные организмы. В случае неполного слияния клеток (т.е. клетка-реципиент получает отдельные участки ядерного генетического материала или части клетки-донора (органеллы)) получаются асимметричные гибриды. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генно-измененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться. Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги. За последнее время созданы ряд межвидовых и межродовых гибридов табака, картофеля, томата, капусты, турнепса, сои и мн. др. Использование достижений клеточной инженерии, например, позволило разработать технологии получения безвирусных растений (например, картофеля) путем регенерации целого растения из одной соматической клетки. Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений.

Последнее десятилетие ученые строят неутешительные прогнозы относительно быстрорастущего потребления сельскохозяйственных продуктов на фоне снижения площади посевных земель. Решение данной проблемы возможно с помощью технологий получения трансгенных растений, направленных на эффективную защиту сельскохозяйственных культур и увеличение урожайности.

Получение трансгенных растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства. Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего, могут служить сорта растений, полученные методами генной инженерии, обладающих повышенной устойчивостью к засухе.

Однако в то время как медицинская продукция уже получила всеобщее признание, внедрение генетически модифицированных продуктов питания в некоторых развитых странах встретило сильнейшую оппозицию, связанную, главным образом, с недостатком генетических знаний и, как следствие страхами. Опасения в отношении трансгенных растений имеют под собой почву.

По мнению специалистов, трансгенные организмы, преимущественно устойчивые к вредителям (в основном за счет токсинов, происходящих из Bacillus thuringiensis) способны вызвать изменения в популяции насекомых, однако куда большее влияние оказывает применение инсектицидов. Устойчивость к солям, воде, засухе и другие характеристики будут оказывать влияние, предсказать которое трудно, поэтому приступать к этим разработкам следует с особой осторожностью.

В целом продукты селекции растений значительно менее агрессивны, чем исходные или дикие растения. Это объясняется тем, что в них человек стремится закрепить выгодные для себя качества, а это зачастую серьезно ограничивает их способность выживать за пределами фермерского поля, где культивирование и контроль за сорняками значительно облегчает им жизнь. Так, например, многие зерновые культуры отбирались по тому признаку, что их колосья не рассыпаются в процессе созревания. Это существенно облегчает уборку урожая, и в то же время препятствует естественному распространению семян. Вероятно, это окажется справедливым и в отношении генетически модифицированных растений, так как по своей основе они также представляют собой культивируемые растения. Недавние эксперименты в Великобритании показали, что сельскохозяйственные генетически модифицированные растения, тестированные на выживание в природных условиях, не имеют никаких преимуществ перед их дикими сородичами.

Создание трансгенных растений в настоящее время развиваются по следующим направлениям:

1.Получение сортов с/х культур с более высокой урожайностью

2.Получение с/х культур, дающих несколько урожаев в год (например, в России существуют ремонтантные сорта клубники, дающие два урожая за лето)

3.Создание сортов с/х культур, токсичных для некоторых видов вредителей (например, в России ведутся разработки, направленные на получение сортов картофеля, листья которого являются остро токсичными для колорадского жука и его личинок)

4.Создание сортов с/х культур, устойчивых к неблагоприятным климатическим условиям (например, были получены устойчивые к засухе трансгенные растения, имеющие в своем геноме ген скорпиона)

5.Создание сортов растений, способных синтезировать некоторые белки животного происхождения (например, в Китае получен сорт табака синтезирующий лактоферрин человека)

Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Кроме того, уходят в небытие пестициды и другие виды ядохимикатов, которые нарушали естественный баланс в локальных экосистемах и наносили невосполнимый ущерб окружающей среде.

Клонирование животных

Растения - не единственные организмы, которые могут быть клонированы естественно. Неоплодотворенные яйца некоторых животных (червей, некоторых разновидностей рыб, ящериц и лягушек) могут развиться в полноценное взрослое животное под определенными условиями окружающей среды – обычно с помощью разных видов стимуляции. Этот процесс называется партагинез, и потомство – клоны самок, которые отложили яйца. Другой пример естественного клонирования – идентичные близнецы. Хотя они генетически отличны от своих родителей, идентичные близнецы – естественное появление клонов друг друга. Ученые проводили эксперименты с клонированием животных, но никогда не были способны стимулировать специализированную клетку, чтобы произвести непосредственно новый организм. Вместо этого, они полагаются на пересадку генетической информации из специализированной клетки в неоплодотворенную клетку яйца, чья генетическая информация была разрушена или физически удалена.

Учитывая трудности в клонировании животных, говорить о широком практическом применении клонов в животноводстве рано. Однако перспективы у этого направления есть.

Пожалуй, одним из наиболее ярких достижений генетики за последнее время является эксперимент по клонированию овцы, успешно завершенный 23 февраля 1997 года учеными Рослинского университета в Шотландии под руководством Яна Вилмута. Для того, чтобы понять, почему публикация результатов эксперимента вызвала такой сильный общественный резонанс (в печати появились сотни публикаций, посвященных работе шотландских генетиков, а овечка Долли, выращенная в ходе эксперимента в течение нескольких недель не сходила с телевизионных экранов) нужно разобраться в сути проделанных работ.

Итак, эксперимент проходил следующим образом. На первом этапе из вымени овцы была взята клетка молочной железы, причем активность ее генов была временно погашена. После этого клетка была помещена в ооцит - эмбриональное окружение, для того чтобы генетическая ее программа перестроилась на развитие эмбриона. Одновременно с этим из готовой к оплодотворению клетки другой овцы было удалено ядро, после чего клетка несколько часов охлаждалась до температуры 5-10 градусов. На следующем этапе яйцеклетка, точнее оставшаяся от нее цитоплазма была внесена в электрическое поле, где под действием электрического тока разрушились клеточные мембраны, и цитоплазма яйцеклетки слилась с ядром, выделенным из клетки молочной железы. Оплодотворенная таким образом яйцеклетка была помещена в матку третьей овцы, которая и выносила знаменитую Долли, геном которой идентичен геному «матери», из клетки которой было взято ядро. Ян Вилмут и его сотрудники не сразу добились успеха – шесть ягнят-клонов стали жертвой научных изысканий, так как обладали генетическими дефектами почек.

Сходные эксперименты по клонированию животных проводились и раньше: еще в 70-е годы профессору Гердону из Оксфордского университета удалось осуществить пересадку ядра и таким образом клонировать лягушек, в 1995 году были клонированы крысы, проводились эксперименты с другими млекопитающими с тем лишь отличием, что вместо клеток молочной железы использовались клетки эмбриона. Колин Стюарт, известный генетик, работающий в Лаборатории исследования раковых заболеваний в Мэриленде, США, считает, что успех Вилмута во многом обусловлен тем, что ему удалось решить проблему отторжения ядра донорской клеткой, создав для ядра подходящую питательную оболочку.

После публикации работы Вилмута, выяснилось, что еще несколько крупных научных центров были близки к успеху шотландских генетиков. Были рассекречены исследования ученых Орегонского центра изучения приматов: по словам американцев, им удалось создать точные генетические копии человекообразных обезьян, правда, с использованием клеток зародыша. Выяснилось, что с 1993 году китайские генетики проводят работы по клонированию быков, российским ученым удалось клонировать каспийского осетра, а австрийцы заявили о том, что также располагают технологией генетического тиражирования. Успех клонирования млекопитающих не оставляет сомнений в том, что преодоление технических трудностей, связанных с клонированием человека, – лишь дело времени.

Клонирование человека?

Итак, работы по клонированию позвоночных были начаты на амфибиях в начале 50-х годов и интенсивно продолжаются вот уже более четырех десятилетий. Что касается амфибий, то, как было сказано в соответствующем разделе, несмотря на значительные достижения, проблема клонирования взрослых особей остается до сих пор не решенной. Установлено, что в ходе клеточной дифференцировки у позвоночных происходит или потеря определенных генных локусов или их необратимая инактивация. Судя по всему, утрачивается та часть генома, которая контролирует не ранние, а более поздние этапы онтогенеза, в частности, метаморфоз амфибий. Механизм этого явления пока не поддается научному объяснению. Но очевидно, что для клонирования взрослых позвоночных необходимо использовать малодифференцированные делящиеся клетки. Это методически важное положение было учтено в более поздних работах.В 1979 году американский биолог Мак Киннел, внесший большой вклад в работу с амфибиями, утверждал, что полученные результаты не позволяют серьерно говорить о возможности клонирования человека - тогда это казалось недоступным для экспериментальных эмбриологов. Однако еще в то время многие ученые, писатели и даже политики стали активно обсуждать возможностт клонирования человека, а некоторые исследователи даже приступили к таким экспериментам. Например, Шеттлз сообщил, что пересадил ядро сперматогониальной клетки (диплоидного предшественника зрелого гаплоидного спермия) в лишенную ядра яйцеклетку человека. В результате три реконструированные яйцеклетки начали дробление, и возникли похожие на морулы скопления клеток, которые позднее деградировали. Шеттлз полагал, что если трансплантировать такие группы клеток в матку женщины, то они могли бы нормально развиваться. Мак Киннел тогда справедливо возразил, что такое предположение маловероятно и совершенно необоснованно.

Еще 5-6 лет назад никто из ученых, а их работало довольно много в этой области, не ставил вопрос об использовании в качестве доноров ядер клеток взрослых млекопитающих. Работы сводились, в основном, к клонированию эмбрионов домашних животных, и многие из этих исследований были не очень успешны. Поэтому так поразило появившееся в начале 1997 года неожиданное для всех сообщение авторского коллектива под руководством Уилмута, что им удалось, используя соматические клетки взрослых животных, получить клональное животное - овцу по кличке Долли. На самом деле, однако, исследователи прошли долгий путь, и Уилмуту с сотрудниками пришлось собрать воедино все существовавшие к тому времени достижения, прежде чем они смогли сообщить о сенсационном результате своей работы.

У этого первого успешного эксперимента есть существенный недостаток - очень низкий коэффициент выхода живых особей (0,36%), и если учесть также высокий процент гибели развивающихся реконструированных яйцеклеток в плодный период развития (62%), который в 10 раз выше, чем при обычном скрещивании (6%), то встает вопрос о причинах гибели зародышей. Все ли пересаженные донорские ядра обладали тотипотентностью? Сохранялся ли полностью их функциональный геном (набор генов, необходимых для развития), все ли нужные для развития гены были дерепрессированы? Это очень важные вопросы, и по одному животному нельзя сделать окончательные выводы. Тем более, что результаты исследований на амфибиях говорят о необратимом характере инактивации, репрессии генов в ходе клеточной дифференцировки. Возможно, авторам крупно повезло, и они достаточно случайно в трех разных клеточных популяциях отобрали за короткий срок стволовые клетки, для которых характерна низкая дифференцированность и способность к делению. Чтобы подтвердить результат этой, в буквальном смысле слова с.енсационной работы, необходимы дополнительные исследования.

В ближайшие годы главная задача исследователей, работающих в данной области - это, по-видимому, создание культивируемых in vitro линий малодифференцированных стволовых клеток, характеризующихся высокой скоростью деления. Ядра именно таких клеток должны обеспечить полное и нормальное развитие реконструированных яйцеклеток, формирование не только морфологических признаков, но и нормальных функциональных характеристик клонированного организма.

Исследования Уилмута и сотрудников имеют не только практическое, но и большое научное значение для генетики развития. В сущности, они нашли условия, при которых цитоплазма ооцитов млекопитающих может репрограммировать ядро соматической клетки, возвращая ей тотипотентность. После публикации этой работы сразу и широко стал дискутироваться вопрос о возможности клонирования человека. Чтобы его обсуждать, имеет смысл выделить два аспекта: методический и этический.

Из изложенного выше следует, что методически или технически клонирование взрослых млекопитающих разработано еще недостаточно, чтобы можно было уже сейчас ставить вопрос о клонировании человека. Для этого необходимо расширить круг исследований, включив в него. кроме овец. представителей и других видов животных. Уилмут с сотрудниками, например, планирует продолжить свои работы на коровах и свиньях. Такие работы необходимы, чтобы установить, не ограничивается ли возможность клонирования взрослых млекопитающих особенностями или спецификой какого-либо одного или нескольких видов.

Затем необходимо существенно повысить выход жизнеспособных реконструированных эмбрионов и взрослых клонированных животных, выяснить, не влияют ли методические приемы на продолжительность жизни, функциональные характерстики и плодовитость животных. Для клонирования человека очень важно свести к минимуму риск, который, тем не менее, в определенной степени все равно останется, риск дефектного развития реконструированной яйцеклетки, главной причиной которого может быть неполное репрограммирование генома донорского ядра.

Стволовые клетки (упрощенно - клетки ранних человеческих зародышей) давно находятся в центре внимания медицины из-за своих уникальных особенностей. В этих клетках еще работают первобытно-мощные таинственные гены, которые навсегда "умолкают" в клетках взрослого человека. Потенциал роста стволовых клеток просто фантастический - достаточно вспомнить, что триллионноклеточный организм новорожденного человека образуется из одной-единственной клетки всего лишь за 9 месяцев! Но еще больше впечатляет потенциал дифференцировки - одна и та же стволовая клетка может трансформироваться в любую(!) клетку человека, будь то нейрон головного мозга, клетка печени или сердечный миоцит. "Взрослым" клеткам такая трансформация не по силам.

Еще одно свойство этих клеток превращает их в поистине бесценный объект для медицины. "Чужие" стволовые клетки, введенные в организм человека, отторгаются гораздо слабее, чем пересаженные целые органы, состоящие из уже дифференцированных клеток. Это означает, что в принципе можно выращивать в лабораторных условиях предшественники самых разных клеток (сердечных, нервных, печеночных, иммунных и др.), и затем трансплантировать их тяжело больным людям вместо донорских органов

1. Клонирование животных

Термин "клон" происходит от греческого слова «klon», что означает веточка, побег, отпрыск. Клонированию можно давать много определений, вот некоторые самые распространенные из них, клонирование - популяция клеток или организмов произошедших от общего предка путём бесполого размножения, причём потомок при этом генетически идентичен своему предку.

Собственно процесс клонирования можно разделить на несколько стадий. Сначала у женской особи берется яйцеклетка, из нее микроскопической пипеткой вытягивается ядро. В безъядерную яйцеклетку вводят другую, содержащую ДНК клонируемого организма. С момента слияния нового генетического материала с яйцеклеткой, как ожидается, должен начаться процесс размножения клеток и рост эмбриона. Подобные ожидания основываются, по крайней мере, на двух явных научных мотивациях. Первой является желание выяснить, насколько нетронутым остается генетический материал в процессе развития организма, имеющего характерную судьбу. Вторая мотивация состоит в том, насколько факторы цитоплазмы самой яйцеклетки совместимы с привнесенным в нее для перепрограммирования генетическим материалом - например, имеет ли значение тот факт, что чужие гены и собственные гены митохондрий яйцеклетки различны? Подобных вопросов возникает множество. Обратимся к истории исследований попыток клонирования животных.

      Овечка Долли

В феврале 1997 года человечество было потрясено известием из шотландского Института Рослина о рождении и нормальном развитии первого млекопитающего, полученного путем переноса ядра, или, проще говоря, клонирования, - овечки Долли. Пожалуй, это событие произвело эффект, сходный с сообщением об изобретении ядерной бомбы или о возникновении телевидения.

Сначала из молочной железы взрослой овцы была взята клетка и искусственными методами была погашена активность ее генов. Затем клетка была помещена в эмбриональное окружение, называемое ооцитом, чтобы произошла перестройка генетической программы на развитие эмбриона. Тем временем из яйцеклетки другой овцы было «вытянуто» ядро, и после охлаждения цитоплазматической оболочки под действием электрического поля в нее было введено ядро, выделенное из клетки молочной железы первой овцы. Оплодотворенная вышеописанным способом яйцеклетка была помещена в матку третьей овцы - суррогатной матери. И после обычного процесса вынашивания была рождена овечка Долли, которая была полной генетической копией овцы - донора клетки молочной железы.

Слух, распространявшийся с неимоверной скоростью чуть ли не с момента объявления о существовании Долли, заключался в том, что клонированная овца стареет в несколько раз быстрее своих «нормально рожденных» родственников.

Эти данные, как оказалось, во многом соответствуют действительности. Согласно одному из наиболее вероятных объяснений этого феноменально быстрого старения является гипотеза, что оно происходит в силу запрограммированного ограничения количества делений и продолжительности жизни каждой клетки высших организмов. Разговоры о нарушениях репродуктивных способностей у Долли вообще не имеют под собой.

Никаких реальных оснований, поскольку она уже как минимум дважды благополучно разрешилась от бремени, родив своего первенца Бонни на втором году жизни, а еще год спустя - троих здоровых ягнят.

Овечка Долли прожила 6 по большей степени мучительных лет.

      Клонирование 5 поросят

В 2000 году британские ученые, клонировавшие овцу Долли, создали этим же методом пять поросят. Специалисты компании PPL Therapeutics провели операцию в американском городе Блэксбург. За основу были взяты клетки взрослой свиньи.

Все выведенные поросята - самки, и все они здоровы.

Специалисты полагают, что таким образом в будущем можно будет производить свиней, органы которых впоследствии используют для пересадки людям. Ожидается, что первые эксперименты в этой области ученые будет проводить в течение четырех лет.

Достаточно больше перспективы перед нами открывает возможность клонирования, но так же перед нами постают множество споров и разногласий.

2. Терапевтическое клонирование

Что касается клонирования человека, данный процесс запрещен законом во многих странах в связи с многими аспектами.

Но сyществует такой вид клонирования, как терапевтический. В терапевтическом клонировании используется процесс, известный как пересадка ядер соматических клеток, (замена ядра клетки, исследовательское клонирование и клонирование эмбриона), состоящий в изъятии яйцеклетки из которой было удалено ядро, и замена этого ядра ДНК другого организма. После многих митотических делений культуры (митозов культуры), данная клетка образует блацисту (раннюю стадию эмбриона состоящую из приблизительно 100 клеток) с ДНК почти идентичным первичному организму.

Цель данной процедуры - получение стволовых клеток. генетически совместимых с донорским организмом.

Можно ли в специальных условиях воспроизвести генетически точную копию любого живого существа? Символом первого клонированного млекопитающего (1996 год) стала овца Долли, страдавшая на протяжении жизни воспалением легких и артритом и насильственно усыпленная в возрасте шести лет - возрасте, равном примерно половине средней жизни нормальной овцы. Клонирование животных оказалось не таким простым в исполнении, как растений.

В терапевтическом клонировании используется процесс, известный как пересадка ядер соматических клеток.

2.1 Перспектива терапевтичекого клонирования

Стволовые клетки, полученные путем терапевтического клонирования, применяются для лечения многих заболеваний. Кроме этого, в настоящее время ряд методов с их использованием находятся на стадии разработки (лечение некоторых видов слепоты, повреждений спинного мозга и др.)

Данный метод часто вызывает споры в ученой среде, под вопрос ставится термин, описывающий созданную бластоцисту. Некоторые считают, что неверно называть это бластоцистой или эмбрионом, так как оно не было создано оплодотворением, но другие утверждают, что при соответствующих условиях из него может развиться плод, и, в конечном счете, ребенок - поэтому уместнее называть результат эмбрионом.

Потенциал для применения терапевтического клонирования в области медицины просто огромен. Некоторые противники терапевтического клонирования выступают против того факта, что данная процедура использует человеческие эмбрионы, при этом разрушая их. Другим же кажется, что подобный подход инструментализирует человеческую жизнь или, что тяжело будет разрешить терапевтическое клонирование, не разрешая при этом репродуктивного клонирования.

3. Значение клонирования

В настоящее время с методами генной инженерии и, в частности, клонирования связано множество надежд и в области лечения неизлечимых ранее болезней, репродукции и трансплантации органов, и в области искусственного зачатия, борьбы с инвалидностью и врожденными пороками… Проводится все больше экспериментов по выращиванию млекопитающих и последующей пересадке их органов человеку. Совсем недавно в Южной Корее удалось клонировать поросенка, генетически измененные клетки которого способны на 60-70% снизить угрозу отторжения органов иммунной системой человека при трансплантации. А в свете проблемы, связанной с неспособностью иметь детей, методы искусственного оплодотворения получили широкую поддержку в обществе. Что касается самого клонирования, то оно позволяет проводить те же процедуры, обходясь генофондом лишь одного из родителей, что часто бывает необходимо в случае предрасположенности одного из родителей к серьезным заболеваниям.

Пересадка клеток поджелудочной железы позволит избавить больных сахарным диабетом от постоянных инъекций инсулина и необходимости соблюдения строгой диеты. Об этом на конференции в Чикаго доложил британский хирург Джеймс Шапиро, успешно проведший первые восемь операций.

Очищенные клетки поджелудочной железы здоровых доноров вводили больным сахарным диабетом внутривенно. Эти клетки задерживались в печени, где они продолжали вырабатывать инсулин. У восьми больных в возрасте от 29 до 53 лет в ближайшие сроки после операции исчезла потребность в инъекциях инсулина.

Представитель Британской диабетологической ассоциации Билл Хартнет считает новый метод лечения чрезвычайно перспективным, но предостерегает от поспешных выводов, поскольку результаты пересадки клеток пока не опубликованы. Больные после этой операции должны постоянно принимать иммунодепрессанты для предотвращения отторжения пересаженных клеток. Развитие метода клонирования позволит в будущем решить проблему получения достаточного количества клеток поджелудочной железы, заявил Джеймс Шапиро на конференции Американского общества трансплантологов.

Технологии клонирования были впервые применены для спасения исчезающих видов животных. Уже в следующем месяце ученые ожидают рождения на свет детеныша гаура (разновидности азиатского вола), которого выносила обыкновенная корова. Сам зародыш был создан в лаборатории из яйцеклетки коровы и генов, взятых из кожи гаура.

С другой стороны, часто поднимается вопрос о том, что клонирование может сократить генетическое разнообразие, сделав человечество более уязвимым, например, к эпидемиям, что приведет, по самым пессимистичным прогнозам, к гибели цивилизации.

Услышав слова "клон" и "клонирование", многие вспоминают овечку Долли и опыты в недрах таинственных лабораторий, откуда выходят на свет созданные словно под копирку существа. На самом деле, клоны растений окружают нас повсюду и бояться их нет причин!


Действительно ли клоны устрашающи и неестественны для природы? Таким вопросом порой задаются и клиенты нашей компании, уже привыкшие покупать растения, полученные "из пробирки", то есть методом клонального микроразмножения. Давайте попробуем разобраться в том, что такое клон, клонирование и какое отношение эти термины имеют к нашим садам и огородам.


Клон: история понятия

Впервые термин "клон" предложил использовать известный английский биолог Джон Холдейн (1963 г). Клон (в переводе с греч. – "веточка", "побег" и "отпрыск") – это один или несколько новых организмов, возникших из части или целого органа материнского организма.

Чаще всего человек сталкивается с клонированием в мире растений. Ветка смородины, давшая корни в стакане с водой – один из примеров: куст смородины – материнский организм, а веточка, отделенная от него и пустившая корни – это новый, молодой организм, или клон. То есть, когда вы укореняете черенок хризантемы или листок фиалки, вы занимаетесь самым настоящим клонированием!

Размер части материнского растения значения не имеет, это может быть половина куста пиона или всего одна клетка организма. Чтобы клонировать растение, главное, поместить его часть в условия, в которых она смогла бы вырасти в целый организм. При этом новое растение будет обладать теми же свойствами и признаками, что и материнское.


Растения клонируют сами себя

Пример черенкования смородины может привести к мысли о том, что клонирование – явление не естественное, ведь это человек отделяет веточку и ставит ее в воду, а не само растение. Но давайте посмотрим, насколько клонирование распространено в природе. Многие примеры могут вас удивить своей неожиданностью.

Самый известный "любитель" клонирования – садовая земляника (Fragaria ananassa). Каждый год она образует несколько длинных побегов, называемых столонами (усами). На концах усов развиваются новые кустики – розетки, которые быстро укореняются.

До тех пор пока молодая розетка связана с материнской, она фактически является ее веткой, но это состояние временное. Молодая розетка становится самостоятельным растением на следующий год, когда ус, соединявший ее с материнской розеткой, отмирает. Так вполне естественно происходит клонирование в природе.

Слева на рисунке растение земляники садовой с усами и молодыми розетками-клонами (пример естественного клонирования). Справа – клонирование земляники в искусственных условиях

Может показаться, что клонирование не слишком распространено в природе и является исключением, а не правилом. Однако это всего лишь видимость: среди окружающей нас растительности можно обнаружить множество примеров естественного клонирования.

Сходным способом создания своих копий, которым пользуется земляника, обладают лапчатка гусиная (Potentilla anserina) и лютик ползучий (Ranunculus repens). Эти растения также образуют усы с розетками листьев на концах. Поселяясь на участках, сорняки могут серьезно докучать хозяевам сада из-за такого способа размножения.

На рисунке цветение лапчатки – сорняка с удивительным потенциалом клонирования, хорошо известного всем садоводам

На рисунке растения, которые охотно себя клонируют сами. Слева – тиарелла с длинным побегом-усом, который уже дал корни. Справа – всем известный комнатный хлорофитум с новым молодым растением на длинном цветоносе

Многие растения прибегают к другой, хотя и похожей тактике клонирования. Лесная черника (Vaccinium myrtillus) также является отличным специалистом по собственному клонированию. Все начинается с одного кустика, выросшего из семени. Он образует два типа побегов: вертикальные, несущие листья, и горизонтальные, подземные. Горизонтальные побеги, стелясь в толще лесной подстилки, радиально расходятся в разные стороны, ветвятся и формируют боковые побеги. Так образуются весьма внушительные по площади черничники.

Несколько лет все кусты черники остаются связанными друг с другом породившими их горизонтальными побегами. Со временем в центре расширяющегося "горизонтального куста" самые старые кустики отмирают. Такой черничник начинает напоминать так называемые "ведьмины кольца" – круги, образуемые грибами различных видов при разрастании грибницы.

С этого момента связь между кустиками черничника прерывается, и они становятся самостоятельными растениями. Так черника создает сразу множество своих копий, то есть клонирует себя.

На рисунке молодой кустик черники

Водные растения – рекордсмены клонирования

Представители одного из семейств водных растений – водокрасовые (Hydrohariaceae) – считаются настоящими мастерами клонирования. Это семейство хорошо знакомо аквариумистам и любителям садовых водоемов. Водокрасовые в совершенстве освоили тот же способ размножения-клонирования, который практикует земляника.

Самый известный представитель водокрасовых – стрелолист обыкновенный (Sagittaria sagittifolia), житель умеренных рек и озер. Образуя горизонтальные побеги (усы), он быстро распространяется по дну водоема. Стрелолист формирует не только усы, но и клубни, несущие запас питательных веществ для потомков-клонов.

На рисунке слева – цветущее растение стрелолиста. Справа – ус стрелолиста с молодым растением-клоном (в круге)

Типичный представитель этого семейства – водокрас (Hydroharis) – также образует усы. Именно он покрывает прибрежные отмели мелкими листьями, напоминающими листья крошечных кувшинок. Эта кроха способна за лето затянуть поверхность небольшого пруда, распространяясь при помощи усов, которые случайно переносят на лапках водоплавающие птицы, помогая растению размножаться.


В семействе водокрасовых есть растение, которое благодаря непревзойденной способности к клонированию смогло завоевать целый континент. Это элодея канадская (Elodea canadensis), или как ее еще называют "водяная чума". В начале XIX века это растение, цепляясь за нижние части кораблей, "сбежало" из Северной Америки, пересекло Атлантический океан и попало в пресные водоемы Европы.


При помощи вегетативного размножения (клонирования) оно распространилось по всей Европе и уже является обычным растением в водоемах Сибири. Это яркий пример глобального природного эксперимента по клонированию.

Говоря о клонах и кл
онировании, невозможно обойти вниманием самый впечатляющий рекорд, установленный в царстве растений. Роща тополя осинообразного (Populus tremuloides) – знаменитый клон и единый живой организм.

Анализ генома растений этой рощи показал, что все ее деревья имеют один и тот же генотип и являются вегетативными потомками одного растения. Площадь, занимаемая клоном, составляет 43 га, возраст рощи – 80 000 лет. Этому клону даже присвоено имя – Пандо (в переводе с лат. – "распространяющийся всюду")


Клонирование в мире животных

Не менее удивительно, что клонирование освоили и животные. Из школьного курса биологии многие помнят маленькое хищное животное – гидру (Hydra). Для нее клонирование вполне естественно: на боковой поверхности тела-стебелька образуется нарост в виде веточки, на конце которого впоследствии прорезается рот и вырастают щупальца. Через несколько дней молодая гидра отделяется от тела родительской и начинает самостоятельную жизнь.

На рисунке гидра обыкновенная с молодой гидрой-почкой – пример природного клонирования в мире животных

Клонирование освоили даже хордовые животные (хорда – предшественник позвоночника), то есть дальние родственники человека.


Таким способом могут размножаться асцидии (Ascidiacea). В возрасте личинки они похожи на маленькую рыбку-головастика. Через некоторое время личинка прикрепляется головной частью к камню и претерпевает изменения, в ходе которых на ее теле формируются новые особи – клоны родительского организма.


Клонирование на службе у садоводства

Можно сказать, что природа в какой-то степени превзошла человека в искусстве клонирования, и это явление вовсе не чуждо естественному ходу вещей. Человек давно взял на вооружение этот способ тиражирования копий интересных для него организмов, и в первую очередь – растений. Способов клонирования или, как его принято называть в отношении растений – вегетативного размножения, немало. Это черенкование, отделение усов (например, у земляники), отводки, прививки, разделение кустов.


В начале XX века наука подарила садоводству новый метод размножения – in vitro (ин витро), или культуру изолированных тканей и органов растений. Суть метода в том, что части органов или отдельные органы (обычно небольшого размера) растений стерилизуют и помещают в изолированные стерильные условия, где проходит их выращивание на искусственной питательной среде. В качестве изолированных условий обычно выступают герметично закрытые пробирки или иные прозрачные сосуды.

На рисунке контейнеры с клонированными растениями, готовые к продаже

Логичным будет вопрос: зачем помещать часть растения в изолированные стерильные условия? Ведь, например, оторванный листик сенполии – это отдельный орган и его можно запросто выращивать в стаканчике с водой.

Дело в том, что в 1920-х годах ученые-биологи подошли вплотную к необходимости ответить на вопрос: какова минимальная часть растения, способного вырасти в целый организм? Пытаясь выращивать отдельные органы и их части, взятые от разных растений, ученые столкнулись с существенным препятствием: чем меньше был изолированный фрагмент растения, тем большей опасности поражения бактериями и грибами он подвергался. Попытки культивировать стерильные фрагменты растений в изолированных условиях показали, что даже очень маленький кусочек растения, если он свободен от спор бактерий и грибов, может долго оставаться живым и даже расти!

Эксперимент позволил добиться регенерации из отдельных клеток целого растения, способного к цветению. Ведь чтобы из маленького кусочка, состоящего всего из нескольких сотен или десятков клеток, вырастить полноценный организм, в котором сотни тысяч клеток, требуется значительный объем питания и энергии.

Питательная среда для клонирования

Искусственная питательная среда – единственный компонент технологии размножения in vitro, привнесенный человеком. Но чуждых природе веществ в этой среде практически нет. В ее состав входят:

сбалансированный комплекс минеральных солей;

сахароза (сахар без примесей);

витамины (В1, В3, B6, В8, С), необходимые для поддержания роста;

гормоны (вещества, регулирующие и направляющие рост в необходимую сторону).

Присутствие в среде гормонов может насторожить любителей экологически чистых продуктов. Но давайте вспомним историю этого метода размножения. Французский ученый Жорж Морель в 1960 г. разработал и предложил технологию массового размножения орхидей в культуре in vitro. А одним из основных компонентов среды, который в то время заменял функцию гормонов, вплоть до 80-х годов был сок кокосовых орехов.

В соке кокоса содержатся те же гормоны, которые сейчас отдельно добавляют в питательную среду, а значит, вещества, которые могут показаться нежелательными "искусственными" компонентами, оказались чуть ли не одними из самых естественных.

Технология, предложенная Ж. Морелем, позволяет быстро и эффективно размножать практически любые растения. Ей дали название – клональное микроразмножение. Большинство рододендронов и орхидей, продающихся сегодня в цветочных магазинах, были произведены при помощи именно этого метода. Особенно замечательно то, что эта удивительная технология позволяет размножать в требуемом количестве растения, которые обычно способны давать отростки всего лишь раз в год.


Еще одна уникальная особенность технологии в том, что размножение растений проводится в изолированных условиях, которые позволяют сохранить клоны свободными от грибковых, бактериальных и вирусных болезней. Отсутствие заболеваний – залог полноценного раскрытия потенциала растения.

Надеемся, что теперь слово клон стало более понятным и не таким пугающим, а клонирование и технология клонального микроразмножения подтолкнет вас к увлечению этими интересными процессами.


Сейчас эта технология стала как никогда близка и доступна: с ее помощью получают высококачественный посадочный материал самых разных культур. Мы, сотрудники компании ООО НПП "МИКРОКЛОН ", благодарим вас за внимание и будем рады познакомить ближе с миром клонального микроразмножения.