Биосфера - это сложная термодинамически открытая система на поверхности Земли, действующая благодаря энергии Солнца и жизнедеятельности живых организмов, аккумулирующая и перераспределяющая огромные потоки вещества и энергии. Этот процесс возможен только благодаря химическим свойствам циклических, или органогенных элементов, названных так В. И. Вернадским в его геохимической классификации элементов за их способность к многочисленным химическим обратимым процессам, а история всех этих элементов может быть выражена циклами.

Понятие «живое вещество» и весь комплекс представлений о его геохимической деятельности введены в науку В. И. Вернадским. В 1919 г. он писал: «Под именем живого вещества я буду подразумевать всю совокупность всех организмов, и животных, в том числе и человека. С геохимической точки зрения эта совокупность организмов имеет значение только той массой вещества, которая ее составляет, ее химическим составом и связанной с ней энергией. Очевидно, только с этой точки зрения имеет значение живое вещество и для почвы, так как, поскольку мы имеем дело с химией почв, мы имеем дело с частным проявлением общих геохимических процессов. Живое вещество, вошедшее в состав почвы, обусловливает в ней самые разнообразные изменения ее свойств, обычно не учитываемые в почвоведении. На первом месте я остановлюсь здесь на его влиянии на мелкозернистость почвы, ибо это свойство почвы является самым основным и резким ее отличием от всех других продуктов земной поверхности. Оно же определяет ход всех химических реакций в почве и делает из почвы активнейшую область с химической точки зрения в биосфере».

Тогда же ученый впервые высказал мысль о совместном нахождении химических элементов в живом веществе, которое определяется биологическими свойствами организмов, а не химическими свойствами элементов.

Для построения живых организмов из 105 химических элементов обязательны шесть - углерод, азот, водород, кислород, фосфор, сера. Для них характерны малый атомный вес, легкость отдачи и присоединения электронов. Главный элемент среди них - углерод. Благодаря способности атомов соединяться в цепи углерод может образовывать бесконечное множество соединений. Остальные пять элементов также чрезвычайно легко образуют общие электронные пары с атомами других элементов, в том числе и друг с другом.

Что касается количества накапливаемых элементов, то 99,9% живой массы организмов составляют элементы «исходной дюжины»: Н, С, N, О, Na, Mg, Р, S, С1, К, Са, Fe. Все они относятся к первым 26 элементам периодической системы, на что обратил внимание еще Д. И. Менделеев. Живая масса на 99% образована всего четырьмя элементами - Н, С, N, О, которые отличаются высокой реакционноспособностью, имеют хорошо растворимые соединения и активно взаимодействуют с углеродом.

В биосфере круговорот элемента будет быстрым и устойчивым только в том случае, если этот элемент не только растворим, но и летуч, т.е. если одно из его соединений может, подобно воде, возвращаться на сушу через .

Таких элементов в биосфере не менее трех: углерод, азот и сера. Среди их «воздушных» соединений - двуокись углерода (С02), метан (СН4), свободный азот (N2), аммиак (NH3), сероводород (H2OS) и двуокись серы (S02). Интересно, что в процессе круговорота углерод, азот и сера меняют свою валентность. Все они находятся в биосфере в более восстановленной форме, чем в окружающем мире.
В обмене веществ между живой и неживой природой наиболее важно перераспределение газов. Растения, синтезируя органическое вещество, поглощают из атмосферы углекислый газ и выделяют кислород. Связывание в органическом веществе 1 г углерода сопровождается выделением 2,7 г кислорода. С 1 га луга за год в атмосферу выделяется 10 - 12 тыс. м3 кислорода.

Важнейшая стадия круговорота - восстановление двуокиси углерода. По существу, это реакция присоединения водорода, дающая в результате формальдегид. Источником водорода служит дегидрирование воды (отнятие у нее водорода), при этом попутно освобождается кислород. Такой способ накопления энергии химических связей свойствен только зеленым растениям, но аккумулированная энергия становится пригодной для других жизненных реакций и для функционирования трофических () цепей. Углерод, фиксированный растениями и использованный затем не только ими, но и животными, возвращается во внешнюю среду, где может включиться в любой из геохимических круговоротов. Напомним, что для биосферы характерно не только присутствие живого вещества. В ней в значительных количествах содержится жидкая вода, принимает на себя мощный поток энергии солнечных лучей, в биосфере лежат поверхности раздела между веществами, находящимися в одной из трех фаз — твердой, жидкой и газообразной. Благодаря этому для биосферы характерен непрерывный круговорот вещества и энергии, в котором активнейшую роль играют живые организмы.

Живые организмы обогащают окружающую среду кислородом, регулируют количество углекислого газа, солей различных металлов и целого ряда других соединений -- словом, поддерживают необходимый для жизни состав атмосферы, гидросферы и почвы. Во многом благодаря живым организмам биосфера обладает свойством саморегуляции -- способностью к поддержанию на планете условий, созданных Творцом.

Огромная средообразующая роль живых организмов позволила ученым выдвинуть гипотезу о том, что атмосферный воздух и почва созданы самими живыми организмами за сотни миллионов лет эволюции. Согласно Писанию, и почва, и воздух уже присутствовали на Земле в день сотворения первых живых существ.

Академик Вернадский на основе сходства строения геологических пород, лежащих глубже кембрийских, с более поздними предположил, что жизнь в виде простых организмов присутствовала на планете "практически изначально". Ошибочность этих научных построений стала впоследствии очевидна геологам.

Несомненной заслугой В. И. Вернадского является твердая убежденность в том, что жизнь появляется только от живых организмов, но ученый, отвергая библейское учение о сотворении мира, полагал, что "жизнь вечна, как вечен космос", и попала на Землю с других планет. Фантастическая идея Вернадского не подтвердилась. Гипотеза эволюционного происхождения организмов планеты от простейших форм сегодня еще более противоречива, чем во времена Вернадского.

Энергетической основой существования жизни на Земле является Солнце, поэтому биосферу можно определить как пронизанную жизнью оболочку Земли, состав и структура которой формируется совместной деятельностью живых организмов и определяется постоянным притоком солнечной энергии.

Вернадский указывал на главное отличие биосферы от других оболочек планеты -- проявление в ней геологической деятельности живых существ. По словам ученого, "все бытие земной коры, по крайней мере, по весу массы ее вещества, в своих существенных, с геохимической точки зрения, чертах обусловлено жизнью". Живые организмы Вернадский рассматривал как систему преобразования энергии солнечного света в энергию геохимических процессов.

В составе биосферы различают живое и неживое вещество -- живые организмы и инертную материю. Основная масса живого вещества сосредоточена в зоне пересечения трех геологических оболочек планеты: атмосферы, гидросферы (океаны, моря, реки и пр.) и литосферы (поверхностный слой пород). К неживому веществу биосферы относится составная часть этих оболочек, связанная с живым веществом циркуляцией вещества и энергии.

В неживом компоненте биосферы различают: биогенное вещество, являющееся результатом жизнедеятельности организмов (нефть, каменный уголь, торф, природный газ, известняки биогенного происхождения и пр.); биокосное вещество, формирующееся совместно организмами и небиологическими процессами (почвы, илы, природная вода рек, озер и пр.); косное вещество, не являющееся продуктом жизнедеятельности организмов, но входящее в биологический круговорот (вода, атмосферный азот, соли металлов и пр.).

Границы биосферы можно определить лишь приблизительно. Хотя известны факты обнаружения бактерий и спор на высоте до 85 км, концентрация живого вещества на больших высотах столь ничтожна, что биосферу считают ограниченной на высоте 20-25 км озоновым слоем, защищающим живые существа от разрушительного воздействия жесткого излучения.

В гидросфере жизнь распространена повсюду. В Марианской впадине на глубине 11 км, где давление 1100 атм и температура 2,4°С, французский ученый Ж. Пикар наблюдал в иллюминатор голотурий, других беспозвоночных и даже рыб. Под толщей антарктического льда более 400 м обитают бактерии, диатомовые и синезеленые водоросли, фораминиферы, ракообразные. Бактерий обнаруживают под слоем морского ила в 1 км, в нефтяных скважинах на глубине до 1,7 км, в подземных водах на глубине 3,5 км. Глубины 2-3 км считаются нижней границей биосферы. Общая мощность биосферы, таким образом, в разных частях планеты изменяется от 12-15 до 30-35 км.

Атмосфера в основном состоит из азота и кислорода. В небольших количествах входят аргон (1%), углекислый газ (0,03%) и озон. От состояния атмосферы зависит жизнедеятельность как организмов суши, так и водных существ. Кислород используется в основном для дыхания и минерализации (окисления) отмирающего органического вещества. Углекислый газ необходим для фотосинтеза.

Гидросфера. Вода -- один из самых необходимых компонентов биосферы. Около 90% воды находится в мировом океане, занимающем 70% поверхности нашей планеты и содержащем 1,3 млрд. км3 воды. Реки и озера включают всего 0,2 млн. км3 воды, а живые организмы -- около 0,001 млн. км3. Существенное значение для жизнедеятельности организмов имеет концентрация в воде кислорода и углекислого газа. Содержание двуокиси углерода в воде в 660 раз больше, чем в воздухе. В морях и океанах различают пять типов сгущений жизни:

1. Шельфовые прибрежные. Эта зона богата кислородом, органикой и другими питательными веществами, поступающими с суши (например, с речной водой). Здесь на глубине до 100 м процветает планктон и его донный "напарник" бентос, перерабатывающий отмирающие организмы планктона.

Океанический планктон составляют два сообщества:

а) фитопланктон -- водоросли (70% из них микроскопические диатомовые) и бактерии;

б) зоопланктон -- первичные консументы фитопланктона (моллюски, рачки, простейшие, оболочники, различные беспозвоночные).

Жизнь зоопланктона протекает в постоянном движении, он то поднимается, то опускается на глубину до 1 км, избегая своих пожирателей (отсюда и название: греч. plankton блуждающий). Зоопланктон -- основная пища усатых китов. Фитопланктон составляет всего 8% от массы зоопланктона, но, быстро размножаясь, продуцирует в 10 раз больше биомассы, чем вся остальная океаническая жизнь. Фитопланктон дает 50% кислорода (остальные 50% производят леса).

Организмы бентоса -- крабы, головоногие и двустворчатые моллюски, черви, морские звезды и ежи, голотурии ("морские огурцы" или другое название -- трепанги), фораминиферы (морские корненожки), водоросли и бактерии приспособлены к жизни почти без света. Перерабатывая органику и превращая ее в минеральные вещества, восходящими потоками доставляющиеся в верхние слои, бентос питает планктон. Чем богаче бентос, тем богаче планктон, и наоборот. За пределами шельфа количество обоих резко падает.

Планктон и бентос формируют в океане мощный слой известковых и кремнеземных илов, образующих осадочные породы. Карбонатные осадки способны превращаться в камень всего за несколько десятков лет.

2. Апвелинговые сгущения образованы на местах восходящих потоков, выносящих к поверхности продукцию бентоса. Известны Калифорнийский, Сомалийский, Бенгальский, Канарский и особенно Перуанский апвелинг, дающий около 20% мирового промысла рыбы.

3. Рифовые -- известные всем коралловые рифы, изобилующие водорослями и моллюсками, иглокожими, сине-зелеными, кораллами и рыбой. Растут рифы необыкновенно быстро (до 20-30 см в год) не только за счет коралловых полипов, но и за счет жизнедеятельности моллюсков и иглокожих, концентрирующих кальций, а также зеленых и красных водорослей с известковым скелетом.

Основной продуцент рифовых экосистем -- микроскопические фототрофные водоросли, поэтому рифы находятся на глубинах не более 50 м, им требуется прозрачная теплая вода с определенной соленостью. Рифы -- одна из самых продуктивных систем биосферы, образующая ежегодно до 2 т/га биомассы.

4. Саргасовые сгущения -- поля плавающих на поверхности бурых и багрянниковых водорослей с множеством воздушных пузырьков. Распространены в Саргасовом и Черном морях.

5. Абиссальные рифтовые придонные сгущения формируются на глубине до 3 км вокруг горячих источников на разломах океанической коры (рифтах). В этих местах выносится из земных недр сероводород, ионы железа и марганца, соединения азота (аммиак, оксиды), питающие хемотрофные бактерии -- продуценты, потребляемые более сложными организмами -- моллюсками, крабами, раками, рыбами и огромными сидячими червеобразными животными рифтиями. Эти организмы не нуждаются в солнечном свете. В рифтовых зонах существа растут примерно в 500 раз быстрее и достигают внушительных размеров. Двустворчатые моллюски вырастают до 30 см в диаметре, бактерии -- до 0,11 мм! Известны галапагосские рифтовые сгущения, а также у острова Пасхи.

В море преобладает разнообразие животных, а на суше -- растений. Только покрытосеменные составляют 50% видов, а морские водоросли -- всего 5%. Общая биомасса на суше представлена на 92% зелеными растениями, а в океане 94% составляют животные и микроорганизмы.

Биомасса планеты обновляется в среднем каждые 8 лет, растения суши -- за 14 лет, океана -- за 33 дня (фитопланктон -- ежедневно). Вся вода проходит через живые организмы за 3 тыс. лет, кислород -- за 2-5 тыс. лет, а углекислый газ атмосферы -- всего за 6 лет. Существенно более длительны циклы углерода, азота и фосфора. Биологический круговорот не замкнут, около 10% вещества уходит в виде осадочных отложений и захоронений в литосферу.

Масса биосферы составляет всего 0,05% массы Земли, а ее объем -- около 0,4%. Общая масса живого вещества составляет 0,01-0,02% от косного вещества биосферы, но роль живых организмов в геохимических процессах весьма значительна. Ежегодная продукция живого вещества составляет около 200 млрд. т сухого веса органики, в процессе фотосинтеза 70 млрд. т воды реагирует с 170 млрд. т углекислого газа. Ежегодно жизнедеятельность организмов вовлекает в биогенный круговорот 6 млрд. т азота, 2 млрд. т фосфора, железо, серу, магний, кальций, калий и др. элементы. Человечество, используя многочисленную технику, добывает около 100 млрд. т полезных ископаемых в год.

Жизнедеятельность организмов вносит существенный вклад в планетарный круговорот веществ, осуществляя его регуляцию, жизнь служит мощным геологическим фактором, стабилизирующим и преображающим биосферу.

Научные предпосылки Сферическая форма планеты (ХYI-XYII, Леонардо да Винчи, Дж. Бруно, Галилео Галилей) Геологическое значение живых организмов на поверхности земного шара (XYII-XYIII, Д. Вудворд, Ж. Бюффон, Жан Батист Ламарк) 1803 г. Ламарк: применил термин биосфера для обозначения совокупности живых организмов (сфера обитания живых организмов) Начиная с XYII века не только выделяются атмосфера, гидросфера и литосфера, но и отмечается их взаимопроникновение

Научные предпосылки XIX век: Гумбольдт – о взаимодействии природных явлений Докучаев (учитель Вернадского) в «Учении о зонах природы» о «…закономерной связи между мертвой и живой природой, между растительным, животным и минеральными царствами, с одной стороны, человеком, его бытом и даже духовным миром – с другой» . Э. Зюсс – 1875 г. Под биосферой понимает не только органический мир, но и окружающую его среду.

Основные положения (эмпирические обобщения) учения Вернадского о биосфере 1926 г. «Биосфера»: «Живое вещество тоже распространено концентрически в земной коре. Область им занятая образует оболочку, которую мы называем биосферой. Эта биосфера охватывает часть литосферы и атмосферы и всю гидросферу»

Эмпирические обобщения Отмечая центральную роль живого вещества, Вернадский указывает: 1. Существует генетическая связь современного живого вещества с живым веществом прошлого, непрерывность влияния этого вещества на окружающую среду, непрерывность процессов биогеохимического выветривания. Принцип актуализма – непрерывность существования биосферы «Растекание жизни - движение, выражающееся во всюдности жизни, есть проявление ее внутренней энергии, производимой ею химической работы. Я буду называть ее геохимической энергией жизни» .

Эмпирические обобщения 2. Принцип Реди (1712 г.) – все живое от живого. В масштабе геологического времени нет геохимических данных самозарождения жизни. Никогда в течение всего геологического времени не наблюдались азойные (т. е. лишенные жизни) геологические эпохи. 3. Принцип Дана (1863) – направленность эволюционного процесса (цефализация). Появление в биосфере человека закономерно. Человек стал геологической силой на планете. 4. Лучистая энергия солнца через посредство живых организмов регулирует химическое проявление земной коры.

Эмпирические обобщения 6. Живое вещество есть планетное явление и не может быть оторвано от биосферы, геологической функцией которой оно является. 7. Космические излучения, идущие от всех небесных тел, охватывают биосферу, проникают все в ней. Биосфера – область превращений космической энергии. Вещество биосферы благодаря этой энергии становится активным. Лик Земли меняется, он не только отражение нашей планеты, но одновременно является и созданием внешних сил космоса.

Место биосферы в планетной системе «Земля» (атмосфера) Верхняя граница биосферы – верхние пределы поля существования жизни – озоновый слой на границе тропосферы и стратосферы. Верхняя граница определяется радиацией (на высоте 9000 м в десятки раз больше, чем на уровне моря, на высоте 15 км в 100 раз). Концентрация жизни с удалением от поверхности Земли снижается. В 1 куб. м воздуха содержится: Вблизи поверхности почвы – 10 -100 тыс. микроорганизмов 11 -21 км - 0, 14 организмов (грибы, бактерии) 48 -85 км - обнаружены микроорганизмы

Границы биосферы Верхние пределы поля устойчивости жизни – выше озонового экрана (85 км и выше, космос). Живые организмы присутствуют либо в покоящемся состоянии, не имея активного метаболизма, либо защищены каким-либо веществом (например, вещество железного метеорита толщиной 800 ангстрем надежное убежище для микроба).

Место биосферы в планетной системе «Земля» (гидросфера) Вся гидросфера заселена живыми организмами: от поверхностных вод океана до глубоководных впадин

Место биосферы в планетной системе «Земля» (литосфера) Литосфера – твердый слой земной коры (кора выветривания) подстилается пластичной и менее вязкой астеносферой. Литосфера сложена породами: Осадочные 12 -15 км (до 20 км) Метаморфические (граниты) Магматические (базальты) Литосфера сложена из плит (океанических и континентальных). Причина тектоники плит (горизонтальные перемещения) – тепловая конвекция в мантии Земли)

Границы в литосфере На континентальных плитах нижние пределы поля существования жизни – 2 -3 км (до 6 км) Например, микроорганизмы в водах, омывающих слои нефти (до 10 -40 тыс. в 1 мл). В океанических плитах – 0, 5 -1 км. Нижние пределы поля устойчивости жизни в литосфере определяются наличием жидкой воды (10, 5 км обнаружено), но не более 25 км, где жизнь принципиально не возможна, т. к. несмотря на высокое давление при температуре 460 градусов жидкая вода переходит в состояние пара.

Средняя мощность биосферы км (Шипунов, 1980) Широтные пояса Полярный Континентальная Океаническая область 12 13 Среднеширотный 14 15 Тропический 22 21

Организованность биосферы «Структуру биосферы удобно назвать организованностью по характеру идущих в ней геологических процессов» Подчеркивается функциональный характер этого понятия. Организованность биосферы как целого динамического образования существует лишь в рамках потоков энергии и круговорота вещества. Выделяются уровни организованности биосферы: физический, термодинамический, химический, биологический, парагенетический

Физический уровень организованности биосферы Биосферу можно рассматривать как очень сложную дисперсную систему, слагающуюся из твердой, жидкой и газообразной фаз. Во всех частях биосферы (тропосферной, гидросферной, литосферной) всегда присутствуют вещества в трех агрегатных состояниях (твердое, жидкое и газообразное). В биосфере идет переход, с активным участием живых организмов, одного агрегатного состояния в другое.

Термодинамический уровень организованности биосферы Газовая фаза связывает термодинамические части биосферы Их термодинамические свойства зависимы друг от друга (извержение вулканических газов, испарение воды и пр.) Роль живого вещества в регулировании газовой составляющей биосферы (например, связывание диоксида углерода в процессе фотосинтеза)

Химический уровень организованности биосферы Химическая структура вод биосферы: наземные (поверхностные), надземные, подземные Химическая структура газов биосферы (газы надземные, наземные, подземные) в континентальной и океанической области Химическая структура твердых тел биосферы (надземные, наземные, собственно литосферные) Химическая структура живого вещества Химическую организованность биосферы изучает биогеохимия

Биологический уровень организованности биосферы Слой 1 - надземное живое вещество фотобиосферы Продуценты (фотосинтезирующие микроорганизмы) Окружающая среда (тропосфера) Консументы Редуценты (грибы и бактерии)

Биологический уровень организованности биосферы Слой 2 - живое вещество наземной и водной фотобиосферы Продуценты (фотосинтезирующие растения и бактерии) Окружающая среда (тропосфера, гидросфера, литосфера) Консументы Редуценты (грибы и бактерии)

Биологический уровень организованности биосферы Слой 3 - живое вещество подземной и водной афотобиосферы Продуценты (хемосинтезирующие микроорганизмы) Окружающая среда (гидросфера, литосфера) Редуценты (грибы и бактерии) Консументы

Парагенетический уровень организованности биосферы «К термодинамическим, фазовым и химическим оболочкам мы должны прибавить… парагенетическую оболочку, определяющую парагенезис элементов, т. е. законы их совместного нахождения. Биосфера и является одной из таких парагенетических оболочек, наиболее нам доступной и известной» .

Живое вещество, являясь особым проявлением термодинамических, физических и химических условий планеты, постоянно стремится организовать их таким образом, чтобы иметь максимальную устойчивость своей структуры, т. е. переводит их на более сложный уровень организованности. В результате возникает парагенетическая оболочка планеты – биосфера. В биосфере проявляется парагенезис структур различных уровней организованности. Это ведет к возникновению таких сложных структур, как биокосные тела.

Категории биосферного вещества 1. Живое вещество – сумма живых организмов постоянно умирающих и рождающихся (биогенная миграция атомов осуществляет связь с другими категориями вещества). 2. Биогенное вещество (прошлое живое вещество: каменный уголь, битум, нефть, известняки и т. д.). 3. Косное вещество – абиотическое, живое вещество в его образовании не участвует. 4. Биокосное вещество – создается живыми организмами и косными процессами (почвы, природные воды, биосфера)

Биогеохимические функции живого вещества Газовая (кислородно-углекислотная, озонная и др.) Концентрационная Окислительно-восстановительная Биохимическая Биогеохимические функции человека

Организованность жизни на планетно-космическом уровне 1. В масштабе биосферы и короткого времени – совокупность живых организмов. 2. В масштабе геологического времени вся биосфера становится актуально организованной частью жизни. 3. В масштабе космического времени можно допустить, что весь космос (?) может стать потенциально организованной частью жизни, ее потенциальным телом!

Организованность жизни на планетно-космическом уровне Джеймс Лавлок (1972) идея живой планеты «Gaia» . Планета, заселенная живыми организмами, сама, как целое приобретает некоторые свойства биологического организма. Умберто Матурана и Франсиско Варела (1974 -1979) Теория аутопоэзиса, теория самопродуцирующихся автономных систем. Создана метасистемная теоретическая модель жизни.

Аутопоэтическая система взаимодействует с окружающей средой как единый коллектив, как целостность. В процессе структурного сопряжения со средой в организме происходят адаптивные структурные перестройки. В среде также происходят возмущения под воздействием организма. Среда не инертна. В процессе взаимодействия организм и среда (которая может включать другие организмы) выступают как коэволюционирующие партнеры. Биосфера является аутопоэтической системой

Ноосфера Термин введен Э. Леруа (французский математик и философ) в 1927 году: Дальнейшая эволюция живого на планете будет совершаться только духовными средствами: общество, язык, культура и т. д. И это будет ноосфера, которая последует за биосферой. Пьер Тейяр де Шарден (французский антрополог) в 1930 г. Написал книгу «Ноосфера: феномен человека» . Под ноосферой понимает отдельную оболочку Земли, сформированную в ходе эволюции материи (тангенциальной энергии) и радиальной (тонкой) энергии на планете

Ноосфера В. И. Вернадский (1935) Ноосфера – природное естественное тело, компонентами которого является литосфера, гидросфера, атмосфера и органический мир, преобразованные разумной деятельностью человека. «Взрыв научной мысли в ХХ веке подготовлен всем прошлым биосферы. Биосфера неизбежно перейдет, так или иначе, рано или поздно, в ноосферу.

Для биосферы характерно не только присутствие живого вещества. Она обладает также следующими тремя особенностями: в ней в значительном количестве содержится жидкая вода; на нее устремляется мощный поток энергии солнечных лучей; в ней находятся поверхности раздела между веществами, находящимися в трех фазах - твердой, жидкой и газообразной. В связи с этим в пределах биосферы осуществляется непрерывный круговорот вещества и энергии, в котором активнейшую роль играют живые организмы.

Биосфера аккумулирует и перераспределяет огромные потоки вещества и энергии. Этот процесс возможен только благодаря химическим свойствам циклических, или "органогенных", элементов, названных так В. И. Вернадским в геохимической классификации элементов за их способность к многочисленным химически обратимым процессам.

Циклический характер химических реакций сначала для газов атмосферы, особенно для кислорода, был предугадан учеными XVIII в. В четкой форме идеи химических циклов были высказаны шотландским ученым Дж. Принглем в 1773 г., когда он рассуждал о равновесии растительной и животной жизни по отношению к свободному кислороду и углекислоте, а затем А.Лавуазье. Французские ученые Ж. Б.Дюма и Ж. Буссенго в 1842 г. дали яркую картину химических циклов, а несколько позже К. Бишоф и Ю.Либих перенесли эти представления на зольные элементы земной коры. Именно такой биотический круговорот был назван В. И. Вернадским"организованностью биосферы". Важнейшим моментом здесь представляется геохимическая деятельность живого вещества.

В 1919 г. Вернадский писал: "Под именем живого вещества я буду подразумевать всю совокупность всех организмов, растительных

и животных, в том числе и человека. С геохимической точки зрения эта совокупность организмов имеет значение только той массой вещества, которая ее составляет, ее химическим составом и связанной с ней энергией". Тогда же ученый впервые высказал мысль об органогенном парагенезисе как факторе геохимических преобразований - совместном нахождении химических элементов в живом веществе, которое определяется биологическими свойствами организмов, а не химическими свойствами элементов.

К основным элементам органогенного парагенезиса В. И. Вернадский относил С, О, Н, N, S, Р, С1, К, Mg, Ca, Na, Fe, к которым обычно присоединяют еще Si, Mn, F, I, Со, В, Sr, Pb, Zn, Ag, Br, V. В живых организмах всегда содержится не менее 20 - 25 химических элементов.

Химические элементы, потребляемые организмами, способствуют протеканию в них биохимических процессов: дыхания, фотосинтеза, синтеза белков, белкового, углеводного и жирового обмена, поддержания гомеостаза внутренней среды, ее водно-солевого равновесия. Эти физиологические процессы определяют потребности живых организмов в тех или иных элементах в биологически доступной форме и протекание биогеохимических процессов в окружающей среде.

Из 105 химических элементов для построения живых организмов обязательны шесть: С, N, Н, О, Р, S. Для этих элементов характерны малая атомная масса, легкость отдачи и присоединения электронов. Главный элемент среди них - углерод. В силу электронейтральности атома, способности атомов соединяться в цепи углерод может образовывать бесконечное множество соединений. Остальные пять элементов также чрезвычайно легко образуют общие электронные пары с атомами других элементов, в том числе и друг с другом.

Что касается количества накапливаемых элементов, то 99,9 % живой массы организмов составляют элементы "исходной дюжины": Н, С, N, О, Na, Mg, Р, S, C1, К, Ca, Fe. Все они относятся к первым 26 самым легким элементам Периодической системы, на что обратил внимание еще Д.И.Менделеев. 99 % живой массы образовано всего четырьмя элементами: Н, С, N, О, которые отличаются высокой реакционной способностью, имеют хорошо растворимые соединения и активно взаимодействуют с углеродом.

Надо помнить, что никакие биохимические реакции на Земле не идут без воды, а наличие свободной воды является такой же важнейшей особенностью биосферы, как и деятельность "живого вещества". Даже пределы активной жизни в биосфере обусловлены возможностью нахождения здесь воды в жидком состоянии. Большое количество воды характерно для любых живых организмов настолько, что, как писал известный немецкий физиолог Э.Дюбуа-Реймон,

организм является одушевленной водой. Для живого организма связанная вода, не теряющая основных свойств, - непременный составной компонент. Количество ее в живых организмах, за исключением спор и инертных семян, колеблется от 60 до 99,7 %.

В биосфере круговорот элемента будет быстрым и устойчивым только в том случае, если вещества не только растворимы, но и летучи, т.е. если одно из соединений элемента может, подобно воде, возвращаться на сушу через атмосферу. Таких элементов в биосфере не менее трех: С, N и S. Среди их "воздушных" соединений - диоксид углерода (СО 2), метан (СН 4), свободный азот (N 2), аммиак (NH 3), сероводород (H 2 S) и диоксид серы (SO 2). Интересно, что в процессе круговорота углерод, азот и сера меняют свои валентности. Явно неслучайно, что все они находятся в биосфере в более восстановленной форме, чем в окружающей среде.

Современная биохимия полагает, что три основные химические реакции обеспечивают образование биомассы и биогенный круговорот:

фиксация углерода в процессе фотосинтеза или хемосинтеза, иначе говоря, карбоксилирование;

восстановление серы микробами - облигатными анаэробами;

восстановление азота путем присоединения водорода, т.е. гидрогенирование.

Из этих реакций только фиксация углерода непременно происходит в зеленом растении под действием солнечного света. Две другие реакции проводятся микробами в анаэробных условиях. Вода в принципе способна обращаться самостоятельно, без помощи биосферы. Но, будучи источником водорода, дающего биосфере энергию, вода не может не оказаться вовлеченной в реакции, идущие в живом веществе.

В обмене веществ между живой и неживой природой наиболее важно перераспределение газов. Растения, синтезируя органическое вещество, поглощают из атмосферы углекислый газ и выделяют кислород. Связывание в органическом веществе 1 г углерода сопровождается выделением 2,7 г кислорода. С каждого гектара луга за год в атмосферу выделяется 10-12 тыс. м 3 этого газа. Ежегодно запас кислорода пополняется на (7- 10) · 10 10 т за счет фотосинтеза зеленых растений.

Важнейшая стадия этого круговорота - фотосинтетическое восстановление диоксида углерода. По существу это реакция гидрогенирования, дающая в результате формальдегид. Источником водорода служит дегидрогенирование воды (отнятие у нее водорода); при этом попутно освобождается кислород. Такой способ накопления энергии химических связей свойствен только зеленым растениям, но аккумулированная энергия становится пригодной для использования и внутри организма для других жизненных

реакций, и в экосистеме для функционирования трофических (пищевых) цепей. Углерод, фиксированный растениями и использованный затем не только ими, но и животными, возвращается вновь окисленным до диоксида во внешнюю среду, где может включиться в любой геохимический круговорот.

Химическое восстановление азота - одна из важнейших реакций гидрогенирования - не может проводиться зелеными растениями, хотя его результат отнюдь не безразличен для них: круговороты углерода и азота тесно зависят один от другого. Без микроорганизмов, поглощающих азот из воздуха и гидрогенирующих азот (источником углерода для них служит его диоксид), весь азот биосферы вскоре перешел бы в атмосферу и остался там в устойчивой окисленной форме.

В.И. Вернадский, рассматривая биосферу как геоло­гическую оболочку, ясно понимал, что структура этой обо­лочки не отражает всей сложности идущих в ней про­цессов. Поэтому он ввел понятие об организованности биосферы. Еще в 1931 году в работе «Об условиях по­явления жизни на Земле» Вернадский определил орга­низованность биосферы как устойчивость динамической системы, ее равновесие.

Организованность биосферы в геологическом времени подтверждается тем, что вся биосфера охватывается и тропосферой, и гидросферой, и литосферой, и живым ве­ществом. Эти части ее взаимопроникают и вза­имодействуют между собой, образуя единое целое (рис. 2).

БИОСФЕРА

Рис. 2. Взаимосвязь оболочек биосферы Земли

Таким образом, понятие «организованность» подра­зумевает, что окружающая природа не есть хаос разроз­ненных элементов, но представляет собой единое и связ­ное целое.

Организованность природы – это не только внешний эмпирический факт, но и ее основное свойство. Оно наиболее ярко выступает в явлении живого, где каж­дая крупица может рассматриваться как своеобразный микрокосмос.

Таким образом, организованность биосферы подразу­мевает единство, равноценность и связь ее частей. Организованность биосферы проявляется на разных уровнях. Различают термодинамический, физический, химический, биологический, парагенетический, энергети­ческий, планетный уровни организованности биосферы.

1.5. Устойчивость и саморегуляция в процессе развития биосферы

Биосфера Земли – открытая, сложная, многокомпо­нентная, саморегулирующаяся, связанная с космосом система живого вещества и минеральных соединений, образующая внешнюю оболочку планеты.

Биосфера является не только областью, в которой на планете Земля возникла и развивалась жизнь во всем многообразии ее форм. Живое вещество за время свое­го существования глубоко изменило первоначальную природу планеты, биологизировало ее. Жизнь сама при­спосабливала и оптимизировала среду. В стратосфере возник озоновый экран, защищающий живые существа от гибельного воздействия ультрафиолетовых лучей и других космических излучений.

Выветривание, почвообразование, делювиальные и аллювиальные наносы закрыли органо-минеральными покровами мелкозема монолитные, бесплодные, безвод­ные скалы. Эти процессы создали рыхлые горизонты, благоприятные по физическим и химическим свой­ствам для существования растений, особенно их кор­невых систем, и экологические ниши для животных. Фотосинтез растений явился механизмом накопления активной биохимической энергии в массах органичес­кого вещества в форме гумуса, ископаемых горючих, гарантирующих удовлетворение запросов организмов на случай стрессовых условий и неблагоприятных пе­риодов.

Живое вещество, создав почвенный покров, преодоле­ло ограниченность ресурсов азотно-углеродного, водно­го, воздушного и минерального питания. Неосинтез высо­кодисперсных минералов обеспечил в почвах физико-химическую поглотительную способность, тем самым закрепляя соединения N, Р, Са, К. Еще более интенсив­ное накопление макроэлементов (С, N, Р, Са, S, К) и мик­роэлементов (I, Zn, Сu, Со, Sе и т.д.) наблюдается в ходе биогенной аккумуляции в форме гумусово-органических соединений.

Возник и показал свою исключительную роль меха­низм сотрудничества – симбиоз – между растениями, животными, насекомыми, низшими беспозвоночными, микроорганизмами с образованием пищевых цепей. Этот механизм в биосфере позволяет обходиться не­большими запасами энергии и химических соединений. Но есть пределы этой устойчивости и саморегу­ляции. Если изменения в среде выходят за пределы периодических колебаний, к которым приспособлены организмы, то слаженность экосистем и биосферы в целом нарушается.

Жизнь, живое вещество, биосфера благодаря этим про­цессам, а также в связи с непрерывностью поступления кос­мической энергии развивалась на Земле по принципу са­моуправляемого расширенного воспроизводства. Так, в девоне существовало около 12 тыс. видов растений, в ка­менноугольном периоде – 27 тыс., в пермотриасе – 43 тыс., в юре – 60 тыс. Современная флора насчитывает около 300 тыс. видов (Ковда, 1983). Это направленное поступа­тельное развитие биосферы не было непрерывным. Ката­строфы (эпохи вулканизма, оледенения, опустынивания) нарушали, задерживали общий процесс расширенного вос­производства, но не могли остановить общий процесс все усложняющегося развития жизни и биосферы.

1.6. Понятие о биогеоценозе как элементарной структурной

единицы биосферы

Биогеоценоз – это взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом вещества и энергии (греч.: bios – жизнь, gi – гео – земля, koinos – общий). В основе понятия лежит определение академика В.Н. Сукачева, по которому биогеоценоз – «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющая свою особую специфику взаимодей­ствия этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и дру­гими явлениями природы и представляющая собой внут­реннее противоречие, диалектическое единство, находя­щееся в постоянном движении и развитии».

В настоящее время термины «биогеоценоз» и «экосистема» часто рассматриваются как синонимы. Но понятие «биогеоценоз», предложенное В.Н. Сукачевым и относящееся к наземным живым системам, имеет определенные территориальные границы. Понятие «экосистема» – безразмерное и может включать пространство любой протяженности – от капли воды с живущими в ней микроорганизмами до всей биосферы в целом. Таким образом, понятие «биогеоценоз» по отношению к поня­тию «экосистема» – более частное. Однако на симпозиуме ЮНЕСКО по вопросу о функционировании земных эко­систем на уровне первичной продукции, проходившем в Копенгагене в 1965 году, условились об одинаковом зна­чении этих двух терминов.

Итак, биогеоценозы являются частями земной или вод­ной поверхности, однородной с точки зрения топографи­ческих, микроклиматических, ботанических, зоологичес­ких, почвенных, гидрологических и геохимических усло­вий. В этой системе круговорот веществ и поток энер­гии характеризуются определенной интенсивностью и направленностью. Отправной точкой круговорота ве­ществ являются фотосинтез и создание фитобиомассы растениями. Реальные размеры биогеоценозов на пла­нете варьируют весьма широко: от нескольких метров (микровпадины в степях и полупустынях, песчаные дюны и т.д.) до километров (биогеоценозы солончака, солон­ца, такыра, однородные участки степей, лесов и т.д.). Вертикальные размеры биогеоценозов варьируют так­же весьма широко: от нескольких сантиметров на ска­лах до нескольких десятков метров в тайге или в тропических лесах.

Биогеоценоз относительно устойчив во времени и тер­модинамически открыт в отношении притока и оттока вещества и энергии. Он имеет вход энергии и различ­ных веществ: солнечная энергия, минеральные элемен­ты горных пород, атмосферные выпадения, грунтовые воды. А также и выход энергии и биогенных веществ в атмосферу (тепло, кислород, углекислый газ и т.д.), ли­тосферу (гумусовые соединения, минералы, осадочные породы) и гидросферу (растворенные биогенные веще­ства грунтовых, озерных, речных вод).

Саморегулирующийся характер биосферы и биогео­ценозов является результатом автокаталитического свойства живого вещества, его способности поглощать и об­менивать вещества, расти и размножаться. Поток энер­гии и вещества в биогеоценозе идет от растений к тра­воядным животным, от последних – к хищникам, затем к низшим организмам и бактериям в почве. Именно травоядные начинают пищевую цепь организмов-потребителей и разрушителей органического вещества, созданного в процессе фотосинтеза. Отсюда первич­ным источником пищи и энергии для пищевой цепи организмов является фитомасса, созданная растениями. Зоомасса – вторичный продукт. Поэтому различают первичную и вторичную продуктивность биогеоценозов и ландшафтов.

В пищевой цепи организмов в биогеоценозе сущест­вует непрерывный поток энергии. На каждом новом зве­не этой цепи теряется 50–90 % энергии и биомассы, за­пасенной на предыдущем этапе. Возникает так назы­ваемая экологическая пирамида запасов энергии. Чем больше звеньев в пищевой цепи, тем выше экологическая пирамида и тем больше будет потеряно энергии в конечном звене (рис. 3).

ОРЕЛ
ЗМЕИ
ЛЯГУШКИ
КУЗНЕЧИКИ
ТРАВЫ

Рис. 3. Пирамида пищевой цепи

Основным положением энергетики экосистем является необратимость биоэнергетических процессов. Поэто­му в применении к экосистемам (и в частности, к почвам) нельзя применять выражение «круговорот энергии», по­добно тому, как в биогеохимии и в почвоведении о кру­говороте веществ. Единственно правильный термин – «поток энергии», так как энергия первичной биологичес­кой продукции в дальнейшем только расходуется. Для пополнения и возобновления биомассы в экосистеме необходим постоянный приток энергии извне, в то вре­мя как притока атомов вещества может и не быть. Одни и те же атомы могут многократно циркулировать в био­геоценозе.