Как определяли метр

В 17 веке, с развитием в Европе науки, начали все чаще звучать призывы к тому, чтобы ввести универсальную меру или католический метр. Это была бы десятичная мера, основанная на естественном явлении, и не зависящая от постановлений находящегося у власти человека. Такая мера заменила бы собой множество разнообразных систем мер, существовавших тогда.

Британский философ Джон Уилкинс предлагал принять за единицу длины длину маятника, полупериод которого был бы равен одной секунде. Однако в зависимости от места измерений значение получалось неодинаковым. Французский астроном Жан Рише установил этот факт во время путешествия в Южную Америку (1671 - 1673).

В 1790 году министр Талейран предложил измерить эталонную длину расположив маятник на строго установленной широте между Бордо и Греноблем - 45° северной широты. В результате, 8 мая 1790 года, на Французском Национальном собрании постановили, что метр - это длина маятника с полупериодом колебаний на широте 45°, равным 1 с. В соответствии с сегодняшней СИ, тот метр был бы равен 0,994 м. Это определение, однако, не устроило научную общественность.

30 марта 1791 года Французская академия наук приняла предложение задать эталонный метр как часть Парижского меридиана. Новая единица должна была быть одной десятимиллионной частью расстояния от экватора до Северного полюса, то есть одной десятимилионной долей четверти окружности Земли, измеренной вдоль Парижского меридиана. Это и стало называться «Метр подлинный и окончательный».

7 апреля 1795 Национальный Конвент принял закон о введении метрической системы во Франции и поручил комиссарам, в число которых входили Ш. О. Кулон, Ж. Л. Лагранж, П.-С. Лаплас и другие учёные, экспериментально определить единицы длины и массы.

В период с 1792 по 1797 год, по решению революционного Конвента, французские учёные Деламбр (1749-1822 гг.) и Мешен (1744-1804 гг.) за 6 лет измерили таки дугу парижского меридиана длиной в 9°40" от Дюнкерка до Барселоны, проложив цепь из 115 треугольников через всю Францию и часть Испании.

Впоследствии, однако, выяснилось, что из-за неправильного учёта полюсного сжатия Земли эталон оказался короче на 0,2 мм. Таким образом, длина меридиана в 40000 км лишь приблизительна. Первый прототип эталона метра из латуни, тем не менее, был в 1795 году изготовлен. Следует отметить, что единица массы (килограмм, определение которого было основано на массе одного кубического дециметра воды), тоже была привязана к определению метра.

История становления системы СИ

22 июня 1799 года во Франции были изготовлены два эталона из платины - эталонный метр и эталонный килограмм. Эту дату можно справедливо считать днем начала развития нынешней системы СИ.

В 1832 году Гаусс создает так называемую абсолютную систему единиц, приняв за основные три единицы: единицу времени - секунду, единицу длины - миллиметр, и единицу массы - грамм, ведь с использованием именно этих единиц ученому удалось измерить абсолютное значение магнитного поля Земли (эта система получила название СГС Гаусса).

В 1860-х под влиянием Максвелла и Томсона было сформулировано требование, согласно которому базовые и производные единицы необходимо согласовть между собой. В итоге система СГС была введена в 1874 году, при этом были выделены и приставки для обозначения дольных и кратных единиц от микро до мега.

В 1875 году представителями 17 государств, среди которых Россия, США, Франция, Германия, Италия, - была подписана Метрическая конвенция, согласно которой были учреждены Международное бюро мер, Международный комитет мер и начинал действовать регулярный созыв Генеральной конференции по мерам и весам (ГКМВ). Тогда же было положено начало работам по разработке международных эталона килограмма и эталона метра.

В 1889 году на первой конференции ГКМВ была принята система МКС, основанная на метре, килограмме и секунде, сходная с СГС, однако единицы МКС виделись более приемлемыми в силу удобства из практического использования. Позже будут введены единицы для оптики и электричества.

В 1948 году, по предписанию французского правительства и Международного союза теоретической и прикладной физики, девятая Генеральная конференция по мерам и весам выступила с поручением Международному комитету по мерам и весам предложить, с целью унификации системы единиц измерения, свои идеи по созданию единой системы единиц измерения, которая смогла бы быть принятой всеми государствами участниками Метрической конвенции.

В результате, в 1954 году на десятой ГКМВ были предложены и приняты следующие шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. В 1956 году система получила название «Système International d’Unitйs» - международная система единиц. В 1960 году был принят стандарт, который впервые назвали «Международная система единиц», и назначили сокращение «SI». Основными единицами остались те же шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. (Русскоязычное сокращение «СИ» можно расшифровать как «Система интернациональная»).

В 1963 году в СССР, по ГОСТу 9867-61 «Международная система единиц», СИ была принята в качестве предпочтительной для областей народного хозяйства, в науке и технике, а также для преподавания в учебных заведениях.

В 1968 году на тринадцатой ГКМВ единица «градус Кельвина» была заменена на «кельвин», также было принято обозначение «К». Кроме того было принято новое определение секунды: секунда - это интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного квантового состояния атома цезия-133. В 1997 году будет принято уточнение, согласно которому этот интервал времени относится к атому цезия-133 в покое при 0 К.

В 1971 году на 14 ГКМВ добавили еще одну основную единицу «моль» - единицу количества вещества. Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

В 1979 году на 16 ГКМВ приняли новое определение для канделы. Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср (ватт на стерадиан).

В 1983 году на 17 ГКМВ было дано новое определение метра. Метр - это длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды.

В 2009 году Правительством РФ было утверждено «Положение о единицах величин, допускаемых к применению в Российской Федерации», а в 2015 году в него были внесены изменения, призванные исключить «срок действия» некоторых внесистемных единиц.

Назначение системы СИ и ее роль в физике

На сегодняшний день международная система физических величин СИ принята по всему миру, и используется больше чем другие системы как в науке и технике, так и в обыденной жизни людей, - она является современным вариантом метрической системы.

Большинство стран используют в технике именно единицы системы СИ, даже если в повседневной жизни пользуются традиционными для этих территорий единицами. В США, например, привычные единицы определяются через единицы системы СИ при помощи фиксированных коэффициентов.

Величина Обозначение
русское наименование русское международное
Плоский угол радиан рад rad
Телесный угол стерадиан ср sr
Температура Цельсия градус Цельсия о С о С
Частота герц Гц Hz
Сила ньютон Н N
Энергия джоуль Дж J
Мощность ватт Вт W
Давление паскаль Па Pa
Световой поток люмен лм lm
Освещенность люкс лк lx
Электрический заряд кулон Кл C
Разность потенциалов вольт В V
Сопротивление ом Ом Ω
Электроемкость фарад Ф F
Магнитный поток вебер Вб Wb
Магнитная индукция тесла Тл T
Индуктивность генри Гн H
Электрическая проводимость сименс См S
Активность радиоактивного источника беккерель Бк Bq
Поглощенная доза ионизирующего излучения грей Гр Gy
Эффективная доза ионизирующего излучения зиверт Зв Sv
Активность катализатора катал кат kat

Исчерпывающее подробное описание системы СИ в официальном виде изложено в издаваемой с 1970 года «Брошюре СИ» и в дополнении к ней; эти документы опубликованы на официальном сайте Международного бюро мер и весов. Начиная с 1985 года данные документы выпускаются на английском и французском языках, и всегда переводятся на ряд языков мира, хотя официальный язык документа - французский.

Точное официальное определение системы СИ формулируется следующим образом: «Международная система единиц (СИ) - система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM)».

Система СИ определяют семь основных единиц физических величин и их производные, а также приставки к ним. Регламентированы стандартные сокращения обозначений единиц и правила записи производных. Основных единиц, как и прежде, семь: килограмм, метр, секунда, ампер, кельвин, моль, кандела. Основные единицы отличаются независимыми размерностями, и не могут быть получены из других единиц.

Что касается производных единиц, то они могут быть получены на базе основных, путем проведения математических действий, таких как деление или умножение. Часть производных единиц, такие как «радиан», «люмен», «кулон», - имеют собственные названия.

Перед названием единицы можно использовать приставку, как например миллиметр - тысячная доля метра, а километр - тысяча метров. Приставка означает, что единицу необходимо разделить или умножить на целое число, являющееся конкретной степенью числа десять.

  • 1 Общие сведения
  • 2 История
  • 3 Единицы системы СИ
    • 3.1 Основные единицы
    • 3.2 Производные единицы
  • 4 Единицы, не входящие в СИ
  • Приставки

Общие сведения

Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор . Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы : килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. были утверждены два эталона - для единицы измерения длины (метр) и для единицы измерения веса (килограмм).

В 1874 г. была введена система СГС, основанная на трех единицах измерения - сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.

В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.

В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.

В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».

В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества (моль).

В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Единицы системы СИ

После обозначений единиц Системы СИ и их производных точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина Единица измерения Обозначение
русское название международное название русское международное
Длина метр metre (meter) м m
Масса килограмм kilogram кг kg
Время секунда second с s
Сила электрического тока ампер ampere А A
Термодинамическая температура кельвин kelvin К K
Сила света кандела candela кд cd
Количество вещества моль mole моль mol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость - это расстояние, которое тело проходит в единицу времени. Соответственно, единица измерения скорости - м/с (метр в секунду).

Часто одна и та же единица измерения может быть записана по разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице ). Однако, на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл измеряемой величины. Например, для записи значения момента силы следует использовать Н×м, и не следует использовать м×Н или Дж.

Производные единицы с собственными названиями
Величина Единица измерения Обозначение Выражение
русское название международное название русское международное
Плоский угол радиан radian рад rad м×м -1 = 1
Телесный угол стерадиан steradian ср sr м 2 ×м -2 = 1
Температура по шкале Цельсия градус Цельсия °C degree Celsius °C K
Частота герц hertz Гц Hz с -1
Сила ньютон newton Н N кг×м/c 2
Энергия джоуль joule Дж J Н×м = кг×м 2 /c 2
Мощность ватт watt Вт W Дж/с = кг×м 2 /c 3
Давление паскаль pascal Па Pa Н/м 2 = кг?м -1 ?с 2
Световой поток люмен lumen лм lm кд×ср
Освещённость люкс lux лк lx лм/м 2 = кд×ср×м -2
Электрический заряд кулон coulomb Кл C А×с
Разница потенциалов вольт volt В V Дж/Кл = кг×м 2 ×с -3 ×А -1
Сопротивление ом ohm Ом Ω В/А = кг×м 2 ×с -3 ×А -2
Ёмкость фарад farad Ф F Кл/В = кг -1 ×м -2 ×с 4 ×А 2
Магнитный поток вебер weber Вб Wb кг×м 2 ×с -2 ×А -1
Магнитная индукция тесла tesla Тл T Вб/м 2 = кг×с -2 ×А -1
Индуктивность генри henry Гн H кг×м 2 ×с -2 ×А -2
Электрическая проводимость сименс siemens См S Ом -1 = кг -1 ×м -2 ×с 3 А 2
Радиоактивность беккерель becquerel Бк Bq с -1
Поглощённая доза ионизирующего излучения грэй gray Гр Gy Дж/кг = м 2 /c 2
Эффективная доза ионизирующего излучения зиверт sievert Зв Sv Дж/кг = м 2 /c 2
Активность катализатора катал katal кат kat mol×s -1

Единицы, не входящие в Систему СИ

Некоторые единицы измерения, не входящие в Систему СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измерения Международное название Обозначение Величина в единицах СИ
русское международное
минута minute мин min 60 с
час hour ч h 60 мин = 3600 с
сутки day сут d 24 ч = 86 400 с
градус degree ° ° (П/180) рад
угловая минута minute (1/60)° = (П/10 800)
угловая секунда second (1/60)′ = (П/648 000)
литр litre (liter) л l, L 1 дм 3
тонна tonne т t 1000 кг
непер neper Нп Np
бел bel Б B
электронвольт electronvolt эВ eV 10 -19 Дж
атомная единица массы unified atomic mass unit а. е. м. u =1,49597870691 -27 кг
астрономическая единица astronomical unit а. е. ua 10 11 м
морская миля nautical mile миля 1852 м (точно)
узел knot уз 1 морская миля в час = (1852/3600) м/с
ар are а a 10 2 м 2
гектар hectare га ha 10 4 м 2
бар bar бар bar 10 5 Па
ангстрем ångström Å Å 10 -10 м
барн barn б b 10 -28 м 2

    Моль определен как количество ве-щества в системе, которое содержит столько структурных элементов, сколько атомов содержится в углероде12 массой 0,012 кг. При исполь-зовании единицы моль структурные элементы должны быть специфициро-ваны и могут быть атомами, моле-кулами, ионами, электронами, другими частицами или группами таких частиц. Моль более важен в изучении химии, нежели физики, но мы с ним встретим-ся при изучении электролиза. Другие пять единиц актив-но используются в физике, так же как и многие производные единицы, полу-чаемые из комбинаций этих пяти ос-новных.

    В системе СИ основной единицей измерения длины или расстояния яв-ляется метр. Он определяется как «длина, равная 1 650 763,73 длин волн в вакууме излучения, соответствую-щего переходу между уровнями 2р 10 и 5d 5 атома криптона-86». Это озна-чает, что расстояние, называемое одним метром, может быть «легко» вос-произведено учеными всего мира с весьма большой точностью. Для рабо-ты с этой книгой, как правило, будет достаточно использования метровой линейки, штангенциркуля или микро-метра в зависимости от измеряемой длины и необходимой точности из-мерения.

    Основной единицей СИ массы яв-ляется килограмм. Он определяется как масса, равная массе международ-ного эталонного килограмма. (Этот эталон находится в распоряжении Международного бюро мер и весов в Севре близ Парижа, Франция.) Эта основная единица является единствен-ной, определение которой не связано с параметрами каких-либо физических явлений. Поэтому каждая страна должна иметь копию международного . Точность оп-ределения килограмма может дос-тигаться при помощи имеющихся в распоряжении весов.

    Основной единицей СИ времени яв-ляется секунда. Она определяется как «длительность 9 192 631 770 периодов излучения, соответствующего пере-ходу между двумя сверхтонкими уров-нями основного состояния атома це-зия- 133». В этом случае также нам не нужна эта степень точности, на уровне изучения нашей книги можно обойтись секундомером или электрон-ным таймером.

    Приставки для единиц СИ

    Для обозначения десятичных крат-ных и дольных единиц измерения мо-гут использоваться приставки, приведенные в таблице 2.2. Приставку сле-дует применять таким образом, чтобы цифровая часть величины находилась между 0,1 и 1000. Исключением из правил являются приставки, относя-щиеся к килограмму, так как они до-бавляются к слову «грамм» (1 . 10 -3 кг). Однако без дополнительных пояснений ясно, как должны выражаться деся-тичные дольные и кратные единицы килограмма.

    Другие применяемые единицы

    Возможными для использования в соответствующем контексте признают-ся и другие единицы, которые не вхо-дят в систему СИ. Они даны в таб-лице 2.3.

    В 1964 г. Международное бюро мер и весов приняло «литр» как возмож-ное обозначение кубического децимет-ра, но рекомендует не применять эту единицу для выражения результатов высокой точности. При использовании таких единиц, как литры и милли-литры, вместо кубических дециметров и кубических сантиметров при прове-дении вычислений могут быть утра-чены преимущества упорядоченности системы СИ, поскольку теряется связь с основной единицей измерения.

Согласно определению, утвержденному XI Генеральной конференцией по мерам и весам, принявшей систему СИ, в качестве основной механической единицы принята единица массы - килограмм. Определение килограмму дано следующее:

Единицей массы - килограммом - является масса вещества, равная массе прототипа килограмма.

Прототип килограмма представляет собой находящийся в Международном бюро по мерам и весам в Севре под Парижем цилиндр из сплава 90% платины и 10% иридия диаметром около 39 мм и такой же высоты. Выбор этого сплава обеспечивает высокие качества при хранении: химическую стойкость, однородность. Сплав легко полируется и хорошо очищается. Ввиду большой плотности, составляющей 21,5 г/см 3 он обладает тем недостатком, что отделение от него уже малых частей приводит к большому изменению массы. По этой причине копии с эталонов массы (вторичные эталоны различных рангов), как правило, изготавливают из стали или из латуни.

Для обеспечения единства измерений массы в ходе установления и утверждения прототипа килограмма было изготовлено много его экземпляров. Масса прототипов обеспечивалось с отличием на уровне 10 -8 по относительной погрешности. Прототипы были проаттестованы в Международном бюро по мерам и весам. Каждому экземпляру была приписана погрешность. Возможные колебания массы прототипов не превышали 25 мкг, что соответствует относительной погрешности 2,5 ×10 -8 . В Россию как в страну-участницу Метрической конвенции в 1889 г. был направлен прототип № 12, который хранится до настоящего времени во Всероссийском научно-исследовательском институте им. Д.И. Менделеева (бывшая Главная палата мер и весов России) в Санкт-Петербурге.

Первоначально прототип массы должен был совпадать с массой одного кубического дециметра воды при ее наибольшей плотности при температуре Т = 3,98°С и давлении 101325 Па. Однако, затем максимальная плотности воды была найдена равной 0, 999 972 г/см 3 , т. е. прототип массы оказался на 28 мкг больше, чем был задуман. Это сказалось бы на определении единицы объема, если бы таковая вводилась бы какобъем одного миллилитра воды. При известной массе прототипа килограмма единицу объема можно определить как объем 1000 г воды при наибольшей плотности и нормальном давлении. Определенная таким образом единица соотносилась бы с производной единицей объема системы СИ как

(2.39)

Международная система единиц СИ не является установленной для всех на все времена. Уже указывалось, что многие страны пользуются другой системой мер. Методы физических измерений также постоянно совершенствуются. Именно по этой причине переопределен целый ряд величин, например, метр, кандела. Ампер. Почти для всех основных единиц системы СИ приняты новые определения, основанные на физических явлениях, отличающихся постоянством и неподверженностью влиянию внешних воздействий. Это дает возможность создать так называемые «естественные» или «нетленные» эталоны. Такие эталоны созданы для основных единиц: длины - метра, времени - секунды, силы тока - Ампера, термодинамической температуры - Кельвина, силы света - канделы. Поиски такого же эталона для единицы массы - килограмма - еще не завершились успехом. Точность, достигаемая с помощью имеющегося эталона килограмма, очень высока и пока удовлетворяет все запросы практики. Тем не менее с выходом человека в Космос, с освоением Мирового океана и т. д. для многих нужд в технике измерений желательно иметь естественный эталон массы. Поиски возможности замены искусственного эталона массы обозначена сейчас метрологами как одна их наиболее актуальных научных и практических проблем.

Одним из путей решения такой задачи является возможность объединения проблем создания и хранения эталонов единицы количества вещества и единицы массы - моля и килограмма. Для этого необходимо создать точное средство измерения количества вещества с диапазоном изменения величины на 23 - 25 порядков, что соответствует как детектированию отдельных частиц, так и макроскопическим измерениям количества вещества, которое могло бы быть принято в качестве эталона инерционной или тяготеющей массы.

Основные единицы СИ
Единица Обозначение Величина Определение Исторические происхождения / Обоснование
Метр м Длина «Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.»
17я Конференция по мерам и весам (1983г, Резолюция 1)
1 ⁄ 10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа .
Килограмм кг Масса «Килограмм есть единица массы, равная массе международного прототипа килограмма»
3я Конференция по мерам и весам (1901г)
Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря .
Секунда с Время «Секунда это - интервал времени, равный 9 192 631 770 периодам излучения , соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 »
13я Конференция по мерам и весам (1967/68г, Резолюция 1)
«В покое при 0 К при отсутствии возмущения внешними полями.»
(Добавлено в 1997году)
День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.
Секунда это - 1 ⁄ (24 × 60 × 60) часть Дня
Ампер А Сила тока «Ампер - это сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2·10 −7 ньютонов на каждый метр длины проводника.»
9я Конференция по мерам и весам(1948г)
Кельвин К Термодинамическая Температура «Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды .»
13th Конференция по мерам и весам (1967/68г, Резолюция 4)
"В обязательном Техническом приложении к тексту МТШ-90 Консультативный комитет по термометрии в 2005 г. установил требования к изотопному составу воды при реализации температуры тройной точки воды.
Шкала Кельвина использует тот же шаг градуса, что и шкала Цельсия , но 0 градусов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15 : °C = - 273,15
Моль моль Количество вещества «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц»
14я Конференция по мерам и весам (1971г, Резолюция 3)
Кандела кд Сила света «равна силе света , испускаемого в заданном направлении источником монохроматического излучения частотой 540·10 12 герц , энергетическая сила света которого в этом направлении составляет (1/683) Вт /ср .»
16я Конференция по мерам и весам (1979, Резолюция 3)

Будущие изменения

В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро .

В пояснительной записке, адресованной CIPM, в октябре 2009 года, президент консультативного совета CIPM по единицам перечислил неопределенности физических фундаментальных констант при использовании текущих определений и тех, какими эти неопроеделенности станут при использовании новых предложенных определений единиц. Он рекомендовал CIPM принять предложенные изменения в «определении килограмма , ампера , кельвина и моля , чтобы они выражались через величины фундаментальных констант h , e , k , и N A ».

См. также

  • Константа (физика)

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Основные единицы СИ" в других словарях:

    основные единицы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN basic units …

    Основные единицы системы

    основные единицы системы - Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц. Примечание Определения и процедуры воспроизведения некоторых основных единиц могут опираться на … Справочник технического переводчика

    Основные единицы Международной системы единиц (СИ) - Таблица А.1 Наименование величины Единица величины Наименование Обозначение международное русское длина метр m м масса килограмм kg кг время секунда s с сила электрического … Словарь-справочник терминов нормативно-технической документации

    Основные единицы системы измерений - Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц. Примечание. Определения и процедуры воспроизведения некоторых основных единиц могут опираться… … Официальная терминология

    основные единицы речи - Элементы, выделяемые в линейном речевом потоке и являющиеся реализацией (вариантами) тех или иных языковых единицСловарь лингвистических терминов Т.В. Жеребило

    - (Systéme International, SI) | | | Обозначение | | Физическая величина | Наимено… … Энциклопедический словарь

    ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН, единицы измерения, используемые для измерениях физических величин. В определении единицы физической величины необходимо задать эталон физической величины и способ его сравнения с величиной при измерении. Например,… … Научно-технический энциклопедический словарь

    Основные - 1. Основные положения системы сельской телефонной связи. М., ЦНИИС, 1974. 145 с. Источник: Руководство: Руководство по проектированию сети электросвязи в сельской местности 16. Основные положения по учету труда и заработной платы в… … Словарь-справочник терминов нормативно-технической документации

    Величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… … Энциклопедия Кольера

Книги

  • Единицы физических величин в энергетике. Точность воспроизведения и передачи. Справочное пособие , Л. Д. Олейникова , Приведены основные метрологические понятия и термины используемые для характеристики средств и методов измерений. Даны определения единиц физических величин, ихсоотношения и обозначения… Категория: Электроэнергетика. Электротехника Издатель: