Не подскажет Звезда — не узнаете тогда:
Кто, зачем, куда укажет, чтобы встретить навсегда.
Вот и наш звездолёт отправляется в полёт,
Чтобы точно там увидеть Космос Чёрный как поёт.
(Мумий Тролль, или что-то на него похожее)

В Космосе нет ничего кроме Энергий. Все это вращается, превращается, преобразовывается, совершенствуется. Присутствуют Энергии самого различного качества. Проще всего разделить Энергии по Частоте Вибраций. Внутри каждой частоты вибрации Энергии могут принимать ту либо иную форму. Таким образом создается объект определенной Частоты Вибрации. Объектов может быть много. Взаимодействуя между собой они помогают совершенствовать имеющуюся Частоту Вибрации. При этом Сами Энергии могут является одной из форм более общей Энергии, содержащей их все.

Энергии и Объекты могут быть самыми разнообразными. Например, синяя или оранжевая Энергия, атомная Энергия, Энергия Жизни, Энергия Роста, Энергия Звезды или Планеты и другие.

Например, погрузившись в Энергию Любви, можно еще войти в Энергию Жизни. Это выглядит как появление во Вселенной и Рождение в каком-либо из местных Миров.

Радость.

В случае Естественной концентрации Энергии всегда возникает ощущение Радости. Которое имеет исключительно Духовную Природу. Радость — это проводник, помощник и попутчик всех кто Возносится.

Любовь.

Во Вселенной Айфаар (нашей Вселенной) одним из высших состояний развития является — Любовь. Когда Существо, развиваясь, достигает Состояния Безусловной Любви — оно может Вознестись над Вселенной и двигаться дальше. При этом нет особенной нужды накапливать опыт в других Вселенных.

Своим существованием Космос вызывает взаимную Любовь и Радость. Космос Существует.

Любая форма жизни рождается два раза:

1) Первый раз — чтобы Существовать.

2) Второй раз — чтобы Жить.

Это относится и к Существам человеческого типа.

Первое рождение представляет собой формирование информационно-энергетической Субстанции, в простонародьи именуемой как Душа или Сознание.

Второе рождение — воплощение в одном из Миров, где используется Энергия Жизни. Обычно это сопровождается получением тела и заселением уже существующей Души в это тело. После чего происходит накопление опыта посредством взаимодействия с окружающей действительностью с помощью тела.

В итоге выходит так: первый раз Существо получает возможность Существовать; второй раз — жить. И лучше бы это ценили.

Вселенная.

Обретая возможность Существовать, Сознание представляет собой информационно-энергетическую субстанцию, вибрирующую с определенной частотой либо в определенном диапазоне частот. Благодаря чему имеет определенные свойства и способности.

Обычно Энергии развиваются самостоятельно, совершенствуясь от более Низких Частот к более Высоким Частотам. Процесс этот довольно продолжительный и не каждое Сознание способно совершенствоваться самостоятельно. Многие по причине собственных заблуждений склонились к самоуничтожению и разложению. В результате чего во Вселенной Айфаар случился кризис.

Чтобы хоть как-то помочь в разрешении кризиса была создана такая Энергия как Энергия Жизни. Что позволило создавать Миры населенные Существами, Сознания которых вибрируют в самых разных Частотах. Смысл создания таких Миров заключается в возможности более простого Развития для Сознаний, которые на это не способны самостоятельно вообще. Данная возможность раскрывается лишь благодаря тому, что, присутствуя в таких Мирах, достаточно следовать советам Высокоразвитых Сознаний и развиваться под их присмотром. Тем более что все жители имеют тела схожего функционала, что дает возможность подражать Высокоразвитым и таким образом совершенствоваться и двигаться вперед проверенным надежным путем.

Но недоразвитые Существа и те, которые были лишены ума, наблюдали за происходящим и пришли к выводу, что не обязательно развиваться по замыслу Творца, ведь можно просто использовать Высокоразвитых Существ в своих собственных целях, для решения собственных задач; просто контролировать всех на уровне тела, а произведенные общими усилиями (либо индивидуально) достижения присваивать себе и продолжать использовать в собственных целях. На тот случай если заканчивается собственная Энергия Жизни — достаточно просто украсть ее у тех, кто ею еще обладает. Иначе говоря, у тех кто юн, глуп, не опытен: тех кто пришел в этот Мир совсем недавно. А, чтобы никто этого не заметил, главное не давать опомниться. В результате такого хитроумного воровства безумные существа теряют свои наиболее тонкие тела, и остается у них лишь физическое тело, которым и ограничиваются все способы их Существования. Так как в силу качеств собственной Души они постоянно разлагаются — единственный способ размножения для них — это клонирование. Подобным Существам выгодно убеждать всех остальных в том, что Бога нет и привязывать все к биологической форме Жизни, потому что это их единственная форма Существования. И таким образом кризис застоя превратился в отстойную опухоль. Подобные места обычно называются “Космическая Опухоль”. Проблема проста: всего-лишь нарушен Космический Порядок. Чтобы ее решить — достаточно восстановить Естественный Порядок.

Форма опухоли.

В данном случае форма опухоли представляет собой прогнившую “рубашку” внутри луковицы, которая питается тем еще живым содержимым “луковицы”, которое она окутала. Таким образом линейная стерилизация “луковицы” не желательно по причине возможного исчезновения еще живого содержимого “луковицы”, которым питается та самая “опухоль”. В то время как “опухоли” это известно, и она использует поглощенную жизнь в качестве заложников, как гарантию собственного Существования, которое находится в весьма шатком положении.

Возможно ли лечение Опухоли? Да, это было бы возможно, если бы “опухоль” сдалась в руки Космических Врачей. Но так как она постоянно от них скрывается и убегает — вероятно, данное событие представляется не возможным.

Опухоль так же можно воспринимать как мошенника, который врет на обе стороны:

1) “Живому Содержимому” он наврал Кто такой Бог и заявил, что он от Него.

2) Богу он нагло заявляет, что “Все в порядке! Все сами хотят того, что с ними происходит”.

Типичное мошенничество, благодаря которому способна Существовать типичная посредственная “опухоль”.

Жизнь в Космосе.

Живя в Космосе, возможно, кому-то придется потерять собственное тело. Случается всякое. Не отчаивайтесь, если это произойдет. Главное поддерживайте Космическую Гармонию и помогайте Ей завоевывать Новые Территории и Пространства. Но не стоит подвергать себя неуместным героическим выпадам, ведущим к прекращению жизни, или терять тело из-за наивности, или глупого желания помочь кому-то, в надежде стать таким образом нужным хоть для кого-то, кто забудет вас через секунду.

Может быть вы станете ученым — может быть нет. Может быть вы не будете первым — может быть да. Может быть у вас будут дети — может быть нет. Может быть вы не будете счастливы — может быть да.

Помните о том, что Низкочастотные Энергии — это вовсе не плохо. Гораздо важнее потенциал, который они в себе несут. Он может оказаться разлагающимся, а может синтезирующимся или другим. Тем не менее, не обижайте братьев наших меньших.

Планета.

Обычно Планету населяют Существами схожего типа Вибрации. Это позволяет всему населению работать продуктивно для собственного Развития, находясь, почти что, в Резонансе, благодаря чему достигается большая скорость развития.

Подобный подход позволяет некоторые Планеты заселять колониями преступных Существ, что избавляет от необходимости содержать тюрьмы и испытывать раздражение от присутствия разлагающих Вибраций.

Планета Земля во Вселенной иначе называется как “Планета Смерти”. На ней находятся Вибрации самого разного качества и Существа, соответствующие этим Вибрациям. Такие эксперименты происходят достаточно редко.

Закономерности Законов.

Законы Бесконечного Космоса первичны. Они распространяются на весь Космос и на все, что в нем находится (в том числе и на каждую точку) не зависимо от местоположения, типа частоты, государственности, законов государства, религиозной принадлежности, позиции Вселенной, или других показателей. Космос вездесущ и Первичен везде.

Бесконечный Космос принадлежит Единому Брахману, создавшему Его. Отделившиеся частички Единого Брахмана — Атманы, также являются Брахманом, потому как их обособленное существование не нарушает целостности Бесконечного Сознания; представляет собой лишь иную форму присутствия в Космосе. По-этому верно утверждение, что Атман — это такой же владелец Космоса как и Брахман. Брахман — творец Космоса. Никто кроме Автора Творения не может знать как лучше развивать Его. По-этому Атман имеет право указывать что и кому лучше делать не зависимо от количества симпатий, а так же сколько чего и кому принадлежит. В соответствии с Законом Концентрации Энергий это не нарушает порядок потому как Атман относится к типу Абсолютных.

Космос — это не только неимоверно невероятно бесконечно-бесконечное но и любой Объект, Предмет, Пылинка, Точка. Если вы видите какой-либо объект — вы видите частную собственность Бесконечного Космоса. Если вы ощущаете ветер — это частная собственность Бесконечного Космоса. Если вы не видите и не ощущаете — это тоже частная собственность Бесконечного Космоса, так же как и вы. Брахман — владелец Космоса. И Атман — это тот же Брахман. Обычно такое напоминают, если об этом забыли, либо делают вид.

Бог — это Единство Целостного.

Пред вами самое точное определение из всех, что опускались в данную Плотность Реальности до Настоящего Времени.

Исполнение Желаний.

Существо, которое не устраивают условия присутствия в Бесконечном Космосе может покинуть Его немедленно. Поведение такого рода рассматривается как изъявленное желание отсутствовать в Космосе. Ведь, подобное отношение к собственному Существованию, сопровождается желанием или стремлением отвергнуть Все Сущее, что равносильно желанию прекратить собственное Существование и исчезнуть из Бесконечного Космоса. Которое должно быть исполнено и принимается к исполнению немедленно.

ПС
Если вы решили Создать что-либо или построить — делайте это Качественно, вкладывайте в собственное Творение всю свою Любовь и все лучшее что у вас есть. Потому что оно в первую очередь принадлежит мне.
Бесконечный Космос.

Настало Время: привести Приговор к исполнению.

Документировано: скачать космос
Распространяется в соответствии с

"Космос бесконечен и безначален по времени и протяжению. Это поражает. Насколько же поразительна причина, раз она произвела бесконечное! Но из этого еще не следует, что и для причины космос - диво. Бесконечность есть продукт мозга или, что то же - порождение самой вселенной. Это нечто субъективное. Что для нас беспредельно, то для причины может быть ограниченной величиной. Но мы никогда этого не поймем. Можем привести только пример, который поясняет нашу мысль, но ничего не доказывает: червяк двигается по яблоку и не видит ни конца его, ни начала, оно ему кажется бесконечным. Так и космос нам представляется неограниченным.

Бесконечность времени и пространства есть акт высшего творчества. Как мы производим какую-нибудь вещь, так причина создала бесконечности всех родов. Вселенная есть просто вещь, не соизмеримая с нашими предметами (т.е. с частями космоса).

Вселенная безгранична по веществу. И тут можем повторить те же рассуждения касательно материи, т.е. распространенности эфира, солнц, планет и других небесных тел.

Космос обладает беспредельной запасной работой (потенциальной энергией). Примером могут служить вечно горящие солнца. Хотя они и тухнут, но те же или другие возгораются. Она так обильна, что даже в ограниченном кусочке материи или эфира никогда не может истощиться. Эта третья бесконечность такое же порождение человеческого ума, как и все прочие. Для причины же и эта бесконечность, вероятно, очень незначительна, как вещь для человека. Но какова же сама причина, которая производит все эти чудесные для людей отвлеченности! Она примерно так же могущественна, как мастер в сравнении с незаметным прахом, падающим с его одежды. Надо заметить, что все наши сравнения негодны в количественном отношении, т.е. причина неизмеримо выше.

Вселенная ничего не содержит, кроме атомов с их частями. Эти атомы каждую минуту готовы возникнуть к жизни. Нет атома, который бы периодически не принимал участия в высшей жизненной организации (существ, подобных человеку и выше). Математически, т.е. если принимать и незаметно малые ощущения за количества, все атомы всегда живы. Итак, весь космос, до последних его пределов (которых, впрочем, нет) всегда жив в абсолютном смысле. Он всегда чувствует. Какова же степень жизнечувствительности причины! Мы рискованно сравниваем ее с жизнечувствительностью высшего потомка человека по отношению к чувствительности травы или бактерии.

Части космоса - атомы живут миллиарды лет, но все же они разлагаются. Однако мельчайшие их доли, продукты разложения, вечны. Периодически они снова соединяются и дают те же атомы. Таким образом, космос постоянен. Он только играет, как волны в море. Каково же постоянство причины и какова ее личная игра!
Что всегда было (вселенная, например), то не может быть создано. Но ведь это рассуждение субъективно, оно есть продукт мозга. Мир создан, но это непонятно для человеческого ума. Что для нас безначально, то для причины имеет начало. Так нельзя отыскать начало в кольце. Насекомое поденка живет день. Если бы она имела разум, то жизнь человека ей тоже казалась бы безначальной и бесконечной. Мы повторяем: мир сотворен. Все космические бесконечности только составные части изделия, которое желательно было создать причине. Но каково же ее могущество, если вселенная только одна из вещей причины.

Мы должны за ней допустить силу не только создавать, но и уничтожать. Также делать то и другое многократно, неограниченное число раз. Причина должна иметь способность ликвидировать и производить материю. Правда, ограниченное пока наблюдение человека не замечает, чтобы причина вмешивалась в дела вселенной или перестраивала ее. Ни творения, ни уничтожения материи не заметно. Космос развивается машинально, но право созидать и уничтожать нельзя отнять от причины."

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

С чего начинается космос и где кончается Вселенная? Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

В древние времена человеку было известно очень мало, относительно знаний на сегодня, и человек стремился к новым знаниям. Конечно же, людей интересовало и то где они живут и что находится за пределами их дома. Через некоторое время у людей появляются аппараты для наблюдений за ночным небом. Тогда человек понимает, что мир гораздо больше, чем он когда-то его себе представлял и сводил его только к масштабам планеты. После долгих изучений космоса человеку открываются новые знания, которые ведут за собой еще большее изучение неизвестного. Человек задается вопросом “Есть ли конец космоса ? или космос бесконечен?”.

Конец космоса. Теории

Сам вопрос о бесконечности космического пространства, конечно, вопрос весьма интересный и мучает всех астрономов и не только астрономов. Много лет назад, когда Вселенная начала интенсивно изучаться, многие философы пытались дать ответ себе и миру о бесконечности космоса. Но тогда это все сводилось лишь на логические рассуждения, а доказательств, подтверждающий что конец космоса существует, как и отрицание этого, не было. Так же в то время люди считали и верили в то, что Земля является центром Вселенной, что все космические звезды и тела обращаются вокруг Земли.

Сейчас ученые так же не могут дать исчерпывающего ответа на этот вопрос, потому что все сводится к гипотезам и нет научного доказательство того или иного мнения о конце космоса. Даже при современных научных достижениях и технологиях человек не может дать ответ на этот вопрос. Все это из-за всеми известной скорости света. Скорость света является основным помощником в изучении космоса, благодаря которой человек и может смотреть в небо и получать информацию. Скорость света – уникальная величина, которая является неопределимым барьером. Расстояния в космосе настолько огромны, что не укладываются у человека в голове и свету необходимы целые года, а то и миллионы лет, чтобы преодолевать такие расстояния. Поэтому, чем дальше человек смотрит в космос, тем дальше он смотрит в прошлое, потому что свет от туда идет так долго что мы видим какой было или космическое тело миллионы лет назад.

Конец космоса, границы видимого

Конец космоса, конечно же, существует в видении у человека. Есть такой рубеж в космосе за которым нам ничего не видно, потому что свет от тех очень далеких мест еще не дошел до нашей планеты. Ученые там не видят ничего и, наверное, очень не скоро это изменится. Возникает вопрос: “Эта граница и есть конец космоса?”. На этот вопрос сложно дать ответ, потому что не видно ничего, но это не значит что там ничего нет. Возможно, там начинается параллельная Вселенная, а может и продолжение космоса, которого мы пока не видим, и никакого конца космоса нет. Существует еще версия о том, что