В некоторых задачах используется понятие "плавучесть", означающее разность между подъемной силой Архимеда и силой тяжести. Звездочкой помечены задачи повышенной сложности (варианты 116–123).

Задача 91. Подводная лодка, не имевшая хода, получив небольшую плавучесть р = 0.01mg м. Т = 0.01mg . Силу сопротивления принять пропорциональной первой степени скорости V и равной R = –0.1mV .Определить траекторию лодки и расстояние, пройденное ею по горизонтали к моменту всплытия.

Задача 92. Определить закон движения x (t ), y (t ) тяжелой материальной точки M массы m = 5 кг O силой, прямо пропорциональной расстоянию до него. Движение происходит в пустоте, сила притяжения, k = 20 с –1 g = 9.8 м/с , v x 0 = 200 м/с , . Ось Ox горизонтальна, а ось Oy

Задача 93. Подводная лодка, не имевшая хода, находилась в надводном положении на расстоянии м от дна. Получив отрицательную плавучесть р = 0.1mg , она начинает уходить от преследования на очень тихом ходу, который обеспечивается малой постоянной горизонтальной силой тяги двигателя T = 0.001mg . Горизонтальной компонентой силы сопротивления можно пренебречь, а ее вертикальную составляющую принять равной R = –0.05mgV , где – вертикальная скорость погружения лодки. Определить закон движения лодки и расстояние, пройденное ею по горизонтали к моменту, когда она ляжет на дно.

Задача 94. Точка M массы m = 5 кг O k = 20 c –1 , r – радиус-вектор точки. В начальный момент точка M имела координаты M 0 (a ,0), a = 24 м , и скорость v 0 с проекциями v x 0 = 0, v y 0 = 4 м/с . Определить закон движения и траекторию точки M

Задача 95. р = 0.001mg , начинает подниматься с глубины м. При этом начавший работать двигатель обеспечивает постоянную горизонтальную силу тяги. Вертикальной компонентой силы сопротивления можно пренебречь, а ее горизонтальную составляющую принять равной, где – горизонтальная скорость лодки. Определить траекторию движения лодки и расстояние, пройденное ею по горизонтали к моменту всплытия.

Задача 96. Подводная лодка, двигавшаяся в надводном положении c малой скоростью U 0 = 0.5 м/с р = 0.5mg , начала срочное погружение с выключенными двигателями. Горизонтальной компонентой силы сопротивления можно пренебречь, а ее вертикальную составляющую принять равной, где – вертикальная скорость погружения лодки. Определить закон движения лодки и расстояние, пройденное ею по горизонтали к моменту, когда она погрузится на глубину м.



Задача 97. Телу M массы m = 8 кг , принимаемому за материальную точку и находящемуся на гладкой наклонной плоскости с углом наклона к горизонту = 30° (рис. 19), сообщена начальная скоростьv 0 = 18 м/с , направленная под углом = 45° к оси x и лежащая в плоскости ху . Ось y g = 9.8 м/с x (t ), y (t ).

Рис.19

Задача 98. Подводная лодка, двигавшаяся в надводном положении со скоростью U 0 = 0.5 м/с , получив отрицательную плавучесть р = 0.1mg , начала погружение с выключенными двигателями. Силу сопротивления принять пропорциональной первой степени скорости V и равной.Определить траекторию движения лодки и расстояние, пройденное ею по горизонтали к моменту, когда она погрузится на глубину м.

Задача 99. Наибольшая горизонтальная дальность полета снаряда м достигается при угле бросания по отношению к горизонту. Определить, чему равны начальная скорость снаряда v 0 и. Ускорение свободного падения g = 9.8 м/с Начальная скорость снаряда v 0 при вылете из канала ствола орудия фиксирована.

Задача 100. Береговое орудие, расположенное на высоте м над уровнем моря, стреляет снарядами, имеющими при вылете из ствола скорость U 0 = 1500 м/с . Определить дальность поражения цели при горизонтальном выстреле и закон движения снаряда x (t ), y (t ), если вертикальной компонентой силы сопротивления можно пренебречь, а ее горизонтальную составляющую принять равной, где – горизонтальная скорость снаряда.

Задача 101. Определить закон движения x (t ), y (t ) материальной точки M массы m = 8 кг , притягиваемой к неподвижному центру O k = 12 c –1 . В начальный момент времени () х 0 = 18 м , v y 0 = 6 м/с . Силой тяжести Земли пренебречь.

Задача 102. Материальная точка массы m Oxy . Модуль силы изменяется по закону. Начальная скорость м/с направлена под углом () к линии действия силы. Получить уравнение траектории точки y (x ).

Задача 103. Точка M массы m = 8 кг движется под действием силы отталкивания от неподвижного центра O , изменяющейся по закону, где k = 12 c –1 , r g = 9.8 м/с 2 . В начальный момент времени () х 0 = 20 м , v y 0 = 50 м/с . Ось Ox горизонтальна, а ось Oy x (t ), y (t ) и траекторию y (x ) точки M .

Задача 104. Материальная точка массы m движется по гладкой горизонтальной плоскости Oxy под действием силы, направленной параллельно оси у (см. рис. 19). Модуль силы изменяется по закону. Начальная скорость м/с направлена перпендикулярно к линии действия силы. Найти закон движения x (t ), y (t ) и уравнение траектории точки y = y (x ).

Задача 105. Телу M массы m = 20 кг , принимаемому за материальную точку и находящемуся на гладкой наклонной плоскости с углом наклона к горизонту = 60° (см. рис. 19), сообщена начальная скорость v 0 = 2 м/с x и лежащая в плоскости ху . Ось y горизонтальна. Ускорение свободного падения g = 9.8 м/с 2 . Определить закон движения тела по наклонной плоскости x (t ), y (t ).

Задача 106. При угле бросания = 60° по отношению к горизонту снаряд имеет горизонтальную дальность полета м . Определить, чему при этом равна начальная скорость снаряда v 0 . Найти также горизонтальную дальность и максимальную высоту траектории при угле бросания 30°. Ускорение свободного падения g = 9.8 м/с

Задача 107. Определить закон движения x (t ), y (t ) тяжелой материальной точки M массы m = 6 кг , притягиваемой к неподвижному центру O силой, прямо пропорциональной расстоянию до него. Движение происходит в пустоте, сила притяжения равна, k = 8 c g = 9.8 м/с 2 . В начальный момент времени () х 0 = 24 м , у 0 = 40 м , . ОсьOx горизонтальна, а ось Oy направлена по вертикали вверх.

Задача 108. Точка M массы m = 4 кг движется под действием силы отталкивания от неподвижного центра O , изменяющейся по закону, где k = 10 c –1 , r – радиус-вектор точки. Ускорение свободного падения g = 9.8 м/с 2 . В начальный момент времени () х 0 = 2 м , v х 0 = 4 м/с , . Ось Ox горизонтальна, а ось Oy направлена по вертикали вверх. Определить закон движения x (t ), y (t ) и траекторию y (x ) точки M .

Задача 109. Парашютист массы падает с раскрытым парашютом на Землю в спокойном воздухе вертикально с установившейся постоянной скоростью м/с . На высоте м над поверхностью Земли он, натянув стропы, приобретает горизонтальную скорость м/с . Определить величину горизонтального отклонения парашютиста от первоначального направления его движения в момент приземления и закон его движения, если при дальнейшем спуске он удерживает стропы в том же положении. Горизонтальная компонента силы сопротивления, действующая на парашютиста в воздушном потоке, R x = –0.01mV x , где – горизонтальная скорость парашютиста. Изменением вертикальной компоненты силы сопротивления, вызванной наклоном купола парашюта, пренебречь.

Задача 110. Стартуя с поверхности Земли, реактивный снаряд массы кг движется в течение первых 10 с под действием силы тяги, направленной под углом к горизонту. Затем сила тяги отключается. Определить траекторию движения снаряда и его дальность полета. Силой сопротивления воздуха пренебречь.

Задача 111. Телу M массы m = 28 кг , принимаемому за материальную точку и находящемуся на гладкой наклонной плоскости с углом наклона к горизонту = 45° (см. рис. 19), сообщена начальная скорость v 0 = 34 м/с , направленная под углом = 30° к оси x и лежащая в плоскости ху . Ось y горизонтальна. Ускорение свободного падения g = 9.8 м/с 2 . Определить закон движения тела по наклонной плоскости x (t ), y (t ).

Задача 112. Подводная лодка, не имевшая хода, получив небольшую положительную плавучесть p = 0.01mg , начинает подниматься с глубины м. При этом начавший работать двигатель обеспечивает постоянную горизонтальную силу тяги Т = 0.01mg . Вертикальной компонентой силы сопротивления можно пренебречь, а ее горизонтальную составляющую принять равной R = –0.01mV x , где – горизонтальная скорость лодки. Определить траекторию движения лодки y (x ) и расстояние, пройденное ею по горизонтали к моменту всплытия.

Задача 113. При угле бросания = 42° по отношению к горизонту снаряд имеет горизонтальную дальность полета м . Определить, чему равна начальная скорость снаряда v 0 при вылете из канала ствола орудия. Найти также горизонтальную дальность полета снаряда и время полета снаряда до цели при угле бросания = 35° и той же начальной скорости v 0 . Ускорение свободного падения g = 9.8 м/с 2 . Сопротивлением воздуха пренебречь.

Задача 114. Определить угол наклона ствола орудия к горизонту, чтобы поразить цель, обнаруженную на той же горизонтальной плоскости, что и орудие, на расстоянии м . Дополнительно определить максимальную высоту траектории и время полета снаряда до цели. Начальная скорость снаряда v 0 = 600 м/с . Ускорение свободного падения g = 9.8 м/с 2 . Сопротивлением воздуха пренебречь.

Задача 115. Определить зависимость горизонтальной дальности полета снаряда, максимальной высоты его траектории и времени полета от угла наклона ствола орудия к горизонту. Найти также значения этих величин для = 38°. Начальная скорость снаряда v 0 = 980 м/с . Ускорение свободного падения g = 9.8 м/с 2 . Сопротивлением воздуха пренебречь.

Задача 116*. Воздушный шар массы m под действием выталкивающей силы F = 1.1mg начинает подъем. Горизонтальная компонента силы сопротивления воздуха пропорциональна квадрату горизонтальной компоненты скорости шара относительно воздуха: R x = –0.1mV , где – его горизонтальная относительная скорость. Вертикальной компонентой силы сопротивления воздуха пренебречь. Определить закон движения шара x (t ), y (t ), если дует горизонтальный ветер со скоростью м/с.

Задача 117*. Тело M массы m = 8 кг k = 20 c O 1 (–a ,0) и O 2 (a ,0),a = 24 м . Движение начинается в точке A 0 (–2a ,0) со скоростью, v у 0 = 18 м/с . Определить закон движения x (t ), y (t ) и траекторию y (x ) точки M Ox , и вычислить ее координаты в эти моменты времени. Силой тяжести пренебречь.

Задача 118*. Тело M массы m = 2 кг находится под действием двух сил притяжения, k = 120 c –1 , направленных к двум неподвижным центрам O 1 (–a ,0) и O 2 (a ,0),а = 12 м . Ускорение свободного падения g = 9.8 м/с 2 . Движение начинается в точке A 0 (2a ,0) со скоростью, v у 0 = 12 м/с . Ось Ox горизонтальна, а ось Oy направлена по вертикали вверх. Определить закон движения x (t ), y (t ) и траекторию y (x ) точки M . Найти моменты времени, когда она пересекает ось Ox , и вычислить ее координаты в эти моменты времени.

Задача 119*. Материальная точка M F = 0.1mg , силы сопротивления R = –0.1mV ,где V – скорость точки, и вертикальной подъемной силы Q = 2m v x , где – горизонтальная скорость точки. Получить закон движения точки вдоль вертикальной оси, если в начальный момент времени ее положение совпадало с началом системы координат, а ее начальная скорость горизонтальна и равна м/с .

Задача 120*. Тело массы на высоте м над поверхностью Земли имело скорость м/с , направленную вертикально вниз. Затем оно попадает в воздушный поток, который движется горизонтально с постоянной скоростью м/с . В результате на него действует сила где V r – скорость тела относительно потока. Определить величину горизонтального отклонения тела от первоначального направления его движения в момент падения на Землю.

Задача 121*. Парашютист массы, совершая затяжной прыжок, падает на Землю в спокойном воздухе вертикально с установившейся постоянной скоростью м/с . На некоторой высоте от поверхности Земли он попадает в воздушный поток, который движется горизонтально с постоянной скоростью u 0 = 0.5 м/с ,и в это же время открывает парашют. Горизонтальная компонента силы, действующая на парашютиста в воздушном потоке, R x = –0.01mV rx , где – горизонтальная скорость тела относительно потока воздуха. Вертикальная компонента силы сопротивления, действующая на парашютиста, R y = –0.1mV , где – его вертикальная скорость. Определить закон движения парашютиста x (t ), y (t ) после раскрытия парашюта.

Задача 122*. Материальная точка M массы движется в вертикальной плоскости под действием силы тяжести, постоянной горизонтальной силы тяги F = 0.2mg , силы сопротивления R = –0.1mV , где V – скорость точки, и вертикальной подъемной силы, где – горизонтальная скорость точки. Получить закон движения точки в направлении горизонтальной оси, если в начальный момент времени ее положение совпадало с началом системы координат, а ее начальная скорость горизонтальна и равна м/с .

Задача 123*. Парашютист массы с раскрытым парашютом падает вертикально с установившейся постоянной скоростью м/с . На высоте м над поверхностью Земли он попадает в воздушный поток, который движется горизонтально с постоянной скоростью м/с . Определить величину горизонтального отклонения парашютиста от первоначального направления его движения в момент приземления и закон его движения x (t ), y (t ). Горизонтальная компонента силы сопротивления, действующая на парашютиста в воздушном потоке, R х = –0.01mV x , где – горизонтальная скорость парашютистаотносительно потока воздуха.

Пример 13. Научно-исследо­ватель­ская подводная лодка шарообразной формы и массы m = = 1.5×10 5 кг начинает погружаться с выключенными двигателями, имея горизонтальную скорость v х 0 = 30 м/с и отрицательную плавучесть Р 1 = 0.01mg , где – векторная сумма архимедовой выталкивающей силы Q и силы тяжести mg , действующих на лодку (рис. 20). Сила сопротивления воды, кг/с . Определить уравнения движения лодки и ее траекторию.

Рис.20

Решение. Начало координат выберем в начальном положении лодки, ось Ox направим горизонтально, а ось Oy – вертикально вниз (см. рис. 20). На лодку действуют три силы: P=mg – вес лодки, Q – архимедова выталкивающая сила, причем, и сила сопротивления R . Лодку примем за материальную точку M . Тогда второй закон Ньютона запишется так: . В проекциях на оси Ox и Oy он будет иметь вид: , . Перепишем эти уравнения в форме системы уравнений первого порядка

Интегрируя их методом разделения переменных, получаем

После интегрирования и подстановки численных значений параметров и начальных данных находим

Закон движения находим из решения дифференциальных уравнений

Он описывается соотношениями

В заключение найдем траекторию y (x ). Для этого из первого уравнения выразим время t через координату х

Подставляя это выражение во второе уравнение, находим

Для описания движения в механике используются математические модели: материальная точка и абсолютно твердое тело.

Материальной точкой называется обладающее массой тело, размерами которого можно пренебречь в условиях данной задачи (размеры тела минимум в 10 раз меньше расстояния, которое проходит тело). Например, при вычислении траектории, по которой Земля движется вокруг Солнца, Землю можно рассматривать как материальную точку, так как ее радиус в 24 000 раз меньше радиуса ее орбиты. При рассмотрении движения тел по поверхности Земли она должна рассматриваться как протяженный объект.

Любое тело можно рассматривать как систему материальных точек.

Если деформация тела при его взаимодействии с другими телами в рассматриваемом процессе пренебрежимо мала, то можно пользоваться моделью абсолютно твердого тела.

Абсолютно твердым телом называется тело, расстояние между двумя точками которого в условиях данной задачи можно считать постоянным, т.е. это тело, форма и размеры которого не изменяются при его движении.

Тела могут двигаться поступательно и вращательно. Рассмотрим поступательное движение.

Поступательным движением называется такое движение, при котором любая прямая, проведенная в теле, остается параллельной самой себе. При поступательном движении все точки тела движутся одинаковым образом. Поэтому достаточно рассмотреть движение одной точки тела, например, центра тяжести, чтобы говорить о движении тела в целом.

Для определения положения тела в пространстве нужно использовать систему отсчета. Системой отсчета называется совокупность системы координат и часов, связанных с телом отсчета, по отношению к которому изучается движение.

Существует два способа описания движения тела (точки): векторный способ и координатный.

1) векторный - задается радиус-вектор . Радиус-вектором называется вектор, проведенный из начала координат в данную точку;

2) координатный - задаются три координаты - x,y,z (рис. 1.1).

Если i, j, k – единичные векторы прямоугольной декартовой системы координат, то радиус-вектор запишется следующим образом:

r = xi + yj + zk .

При движении материальной точки М ее координаты x, y, z и r меняются со временем. Поэтому для задания закона движения необходимо знать либо уравнения зависимости координат точки от времени:

x = x(t) y = y(t) z = z(t) либо уравнение r = r (t).

Эти уравнения называются кинематическими уравнениями движения материальной точки.

Исключив из уравнения время, получим уравнение траектории.

Траекторией называется линия, которую описывает в пространстве сама точка при ее движении. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Если все участки траектории лежат в одной плоскости, то движение называется плоским .

Длиной пути S материальной точки называют сумму длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени.

z s ∆r r 0 r y x рис. 1.2
Перемещением ∆r материальной точки называется вектор, проведенный из начального положения точки в конечное (рис.1.2):

∆r = r – r 0

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории. Так как перемещение – вектор, то имеет место закон независимости движений:

Если точка одновременно участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме перемещений, совершаемых точкой за одно и тоже время в каждом из движений отдельно.

Полное описание движения материальной точки с помощью только вектора перемещения невозможно. Необходимо знать быстроту изменения перемещения.

Пусть материальная точка движется по криволинейной траектории. Вектор перемещения представляет собой приращение радиуса-вектора за время Δt:

Величину, характеризующую быстроту изменения положения точки, определяют отношением: , где – средняя скорость движения. Вектор совпадает по направлению с . Если в выражении для средней скорости перейти к пределу при ∆t → 0, то получим выражение мгновенной скорости , т.е. скорости в данный момент времени:

Это значит, что в данный момент времени равен производной и направлен по касательной к траектории в данной точке (как и ) в сторону движения точки.

Из математики известно, что модуль малого приращения равен длине ds соответствующей ему дуги траектории, т.е.

Из последнего следует понятие путевой скорости:

Для нахождения пути, пройденного телом за промежуток времени Δt, надо найти интеграл:

Поскольку мгновенная скорость – векторная величина, то ее можно разложить на три составляющие по осям координат:

v = v x i + v y j + v z k .

Используя выражение для мгновенной скорости, получим:

Отсюда проекции вектора скорости на оси координат:

Рассмотрим некоторые частные случаи:

1. Скорость материальной точки не зависит от времени (равномерное движение). Для определения перемещения используется уравнение:

для определения пути

2. Скорость материальной точки является функцией времени (неравномерное движение).

для пути аналогично.

Скорость механического движения в большинстве случаев не остается постоянной, а меняется со временем либо по величине, либо по направлению, либо по величине и направлению одновременно.

A
В
Пусть тело двигалось из точки А в точку В. Перенеся вектор в точку А находим приращение скорости : – среднее ускорение - вектор, равный производной от вектора скорости по времени и совпадающий по направлению с вектором изменения скорости ∆v за малый интервал времени ∆t.

Используя предыдущие рассуждения, получим:

– мгновенное ускорение.

Ускорение – физическая величина характеризующая быстроту изменения скорости.

Так как ускорение – это вектор, то: a = a x i + a y j + a z k

Легко показать, что:

а для модуля вектора ускорения получим:

Криволинейное движение .

В общем случае криволинейного неравномерного движения скорость изменяется как по величине, так и по направлению. Полное ускорение, которым обладает движущаяся точка, определяет оба вида изменения скорости. Для рассмотрения движения удобно использовать скользящую систему координат – систему, которая изменяет свое положение в пространстве вместе с движением материальной точки. За начало отсчета принимают саму движущуюся точку. Одна ось направлена по касательной к траектории движения материальной точки в данный момент времени (тангенциальная ось τ ), другая направлена перпендикулярно (нормальная ось n ). Рассмотрим движение материальной точки по криволинейной плоской траектории.

М τ 1 v 1

n 1 N

n 2 τ 2

v 2

Вектор скорости направлен всегда по касательной к траектории. В скользящей системе координат скорость материальной точки можно представить как v = vτ

Учитывая, что, имеем

Таким образом, ускорение материальной точки представляет собой сумму двух векторов, первый их которых показывает быстроту изменения модуля скорости (тангенциальное ускорение), второй – быстроту изменения направления скорости (нормальное ускорение):

Нормальное ускорение направлено перпендикулярно тангенциальной оси и направлено по нормальной оси скользящей системы координат.

Для определения физического смысла нормального ускорения рассматривают равномерное движение точки по окружности, из которого следует, что



Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль скорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1.19), а l – длина траектории . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это тангенциальное ускорение :

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории направлен по хорде (рис. 1.19), а l – длина . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это :

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

В данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

— это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.