Ряды с комплексными членами.

19.3.1. Числовые ряды с комплексными членами. Все основные определения сходимости, свойства сходящихся рядов, признаки сходимости для комплексных рядов ничем не отличаются от действительного случая.

19.3.1.1. Основные определения . Пусть дана бесконечная последовательность комплексных чисел . Действительную часть числа будем обозначать , мнимую - (т.е. .

Числовой ряд - запись вида .

Частичные суммы ряда :

Определение. Если существует предел S последовательности частичных сумм ряда при , являющийся собственным комплексным числом, то говорят, что ряд сходится; число S называют суммой ряда и пишут или .

Найдём действительные и мнимые части частичных сумм: , где символами и обозначены действительная и мнимая части частичной суммы. Числовая последовательность сходится тогда и только тогда, когда сходятся последовательности, составленные из её действительной и мнимой частей. Таким образом, ряд с комплексными членами сходится тогда и только тогда, когда сходятся ряды, образованные его действительной и мнимой частями.

Пример.

19.3.1.2. Абсолютная сходимость.

Определение. Ряд называется абсолютно сходящимся , если сходится ряд , составленный из абсолютных величин его членов.

Так же, как и для числовых действительных рядов с произвольными членами, можно доказать, что если сходится ряд , то обязательно сходится ряд . Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.

Ряд - ряд с неотрицательными членами, поэтому для исследования его сходимости можно применять все известные признаки (от теорем сравнения до интегрального признака Коши).

Пример. Исследовать на сходимость ряд .

Составим ряд из модулей (): . Этот ряд сходится (признак Коши ), поэтому исходный ряд сходится абсолютно.

19.1.3.4. Свойства сходящихся рядов. Для сходящихся рядов c комплексными членами справедливы все свойства рядов с действительными членами:

Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится к нулю при .

Если сходится ряд , то сходится любой его остаток, Обратно, если сходится какой-нибудь остаток ряда, то сходится и сам ряд.

Если ряд сходится, то сумма его остатка после n -го члена стремится к нулю при .

Если все члены сходящегося ряда умножить на одно и то же число с , то сходимость ряда сохранится, а сумма умножится на с .

Сходящиеся ряды (А ) и (В ) можно почленно складывать и вычитать; полученный ряд тоже будет сходиться, и его сумма равна .

Если члены сходящегося ряда сгруппировать произвольным образом и составить новый ряд из сумм членов в каждой паре круглых скобок, то этот новый ряд тоже будет сходиться, и его сумма будет равна сумме исходного ряда.

Если ряд сходится абсолютно, то при любой перестановке его членов сходимость сохраняется и сумма не изменяется.

Если ряды (А ) и (В ) сходятся абсолютно к своим сумма и , то их произведение при произвольном порядке членов тоже сходится абсолютно, и его сумма равна .

19.3.2. Степенные комплексные ряды.

Определение. Степенным рядом с комплексными членами называется ряд вида

где - постоянные комплексные числа (коэффициенты ряда), - фиксированное комплексное число (центр круга сходимости). Для любого численного значения z ряд превращается в числовой ряд с комплексными членами, сходящийся или расходящийся. Если ряд сходится в точке z , то эта точка называется точкой сходимости ряда. Степенной ряд имеет по меньшей мере одну точку сходимости - точку . Совокупность точек сходимости называется областью сходимости ряда.

Как и для степенного ряда с действительными членами, все содержательные сведения о степенном ряде содержатся в теореме Абеля.

Теорема Абеля. Если степенной ряд сходится в точке , то

1. он абсолютно сходится в любой точке круга ;

2. Если этот ряд расходится в точке , то он расходится в любой точке z , удовлетворяющей неравенству (т.е. находящейся дальше от точки , чем ).

Доказательство дословно повторяет доказательство раздела 18.2.4.2. Теорема Абеля для ряда с действительными членами.

Из теоремы Абеля следует существование такого неотрицательного действительного числа R , что ряд абсолютно сходится в любой внутренней точке круга радиуса R с центром в точке , и расходится в любой точке вне этого круга. Число R называется радиусом сходимости , круг - кругом сходимости . В точках границы этого круга - окружности радиуса R с центром в точке - ряд может и сходиться, и расходиться. В этих точках ряд из модулей имеет вид . Возможны такие случаи:

1. Ряд сходится. В этом случае в любой точке окружности ряд сходится абсолютно.

2. Ряд расходится, но его общий член . В этом случае в некоторых точках окружности ряд может сходиться условно, в других - расходиться, т.е. каждая точка требует индивидуального исследования.

3. Ряд расходится, и его общий член не стремится к нулю при . В этом случае ряд расходится в любой точке граничной окружности.

Размер: px

Начинать показ со страницы:

Транскрипт

1 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где (a k) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если сходится последовательность (S) его частичных сумм S a k k При этом предел S последовательности (S) называется суммой ряда (46) Ряд a k называется -м остатком ряда (46) Для сходящегося k ряда S S r и lm r, те ε > N, N: r < ε Для сходящегося ряда (46) необходимым и достаточным признаком его сходимости является критерий Коши: ряд (46) сходится тогда и только тогда, если ε >, N, N: a < ε p k k Необходимым условием сходимости ряда (46) является требование lm a Действительно, из сходимости ряда (46) следует, согласно критерию Коши, что ε >, N >, что при p, следует, что S S < ε Если сходится ряд ak k a (47) с действительными положительными членами, то очевидно, сходится и ряд (46), который в этом случае называется абсолютно сходящимся А для ряда (47) уже можно применить признаки Даламбера и Коши: ряд (47) сходится, если, начиная с a некоторого номера N соотношение l < a, N значит, сходится абсолютно ряд (46)), если a q <, N k ; и ряд (47) сходится (а,

2 9 Функциональные ряды и их свойства Равномерная сходимость Теорема Вейерштрасса Пусть в области G комплексной плоскости Z определена бесконечная последовательность однозначных функций ((Z)) Выражение вида U U (48) будем называть функциональным рядом Ряд (48) называется сходящимся в области G, если Z G соответствующий ему числовой ряд сходится Если ряд (48) сходится в области G, то в этой области можно определить однозначную функцию, значение которой в каждой точке области G равно сумме соответствующего числового ряда (48) в области G Тогда G, > k () U k () < ε Заметим, что в общем случае N зависит и от ε и от Определение Если ε >, N(ε), N(ε): ε, N (ε,), N(ε,) : выполняется сразу области G k U k < ε G, то ряд (48) называется равномерно сходящимся в k k Если остаток ряда обозначить r U, то тогда условие равномерной сходимости ряда (48) можем записать в виде: r < ε, N(ε), G Достаточным признаком равномерной сходимости ряда (48) является признак Вейерштрасса: Если всюду в области G члены функционального ряда (48) могут быть мажорированы членами некоторого абсолютно сходящегося числового ряда a, те

3 a U, G, (49) то ряд (48) сходится равномерно N Действительно, тк ряд a сходится, то > В силу (49) в G имеет место неравенство ε, > k k N, что a < ε, U U a < ε при N, что и доказывает равномерную k k k k k k сходимость ряда (48) в области G Приведем некоторые теоремы о равномерно сходящихся рядах Они доказываются совершенно также, как соответствующие теоремы вещественного анализа и поэтому приведем их без доказательства Теорема 5 Если функции U непрерывны в области G, а ряд U сходится в этой области равномерно к функции, то также непрерывна в G Теорема 6 Если ряд (48) непрерывных функций U сходится равномерно в области G к функции, то интеграл от этой функции по любой кусочногладкой кривой, целиком лежащей в области G, можно вычислить путем почленного интегрирования ряда (48), те Теорема 7 Если члены d U d U сходящегося в области G ряда U имеют непрерывные производные в этой области и ряд U равномерно сходится в G, то данный ряд U можно почленно дифференцировать в области G, причем U U, где U - сумма ряда

4 Для функциональных рядов в комплексном анализе существует теорема Вейерштрасса, которая позволяет значительно усилить теорему о возможности почленного дифференцирования функционального ряда, известную из вещественного анализа Прежде чем сформулировать и доказать ее, заметим, что ряд U, равномерно сходящийся по линии l, останется равномерно сходится и после умножения всех его членов на функцию ϕ, ограниченную на l В самом деле, пусть на линии l выполняется неравенство ϕ () < M Тогда для остатков ρ и r рядов U и U ϕ справедливо соотношение ϕ U U r < M r ρ ϕ ε и, тк N, > N: r < и одновременно с ним ρ < ε, то этим доказано M высказанное утверждение Если сумма данного ряда есть S, то сумма ряда, полученного после умножения на ϕ, очевидно будет ϕ S Теорема 8 (Вейерштрасса) Если члены ряда - аналитические в некоторой области G функции и этот ряд сходится в области G равномерно, то его сумма также является функцией аналитической в G, ряд можно почленно дифференцировать и полученный ряд F равномерно сходится к () F Выберем любую внутреннюю точку области G и построим круг столь малого радиуса с центром в этой точке, чтобы он целиком лежал внутри G (рис) В силу равномерной сходимости данного ряда в G, G ρ Рис он, в частности, равномерно сходится на окружности этого круга Пусть - любая точка на Умножим ряд () () () () () (5) на величину Полученный ряд

5 также равномерно сходится к своей сумме () () () () (), тк функция (5) ограничена на, ибо для точек этой окружности ρ - радиусу окружности (напомним: - здесь постоянная) Тогда по сказанному выше ряд (5) можно почленно интегрировать: () d () d () d d π π π π В силу аналитичности функций, к ним можно применить формулу Коши, на основании которой получаем () d π, (5) а сумма ряда справа в (5) есть и, следовательно, получаем равенство π () d Но функция, будет суммой равномерно сходящегося ряда аналитических и, следовательно, непрерывных функций в G Значит, интеграл справа является интегралом типа Коши и, значит, он представляет функцию, аналитическую внутри и, в частности, в точке Тк - любая точка области G, то первая часть теоремы доказана Для доказательства возможности почленного дифференцирования данного ряда надо ряд (5) умножить на ограниченную на функцию выкладки и повторить Замечание Можно доказать, что ряд аналитических функций можно дифференцировать бесконечное число раз, при этом получим, что ряд сходится равномерно, причем его сумма равна (k) (k)

6 ряды вида где Степенные ряды Теорема Абеля Весьма важным случаем общих функциональных рядов являются степенные (), (53) - некоторые комплексные числа, а - фиксированная точка комплексной плоскости Члены ряда (53) являются аналитическими функциями на всей плоскости, поэтому для исследования свойств данного ряда могут быть применены общие теоремы предыдущих пунктов Как было установлено в них, многие свойства являются следствием равномерной сходимости Для определения области сходимости степенного ряда (53) существенная оказывается следующая теорема Теорема 9 (Абеля) Если степенной ряд (53) сходится в некоторой точке, то он абсолютно сходится и в любой точке, удовлетворяющей условию, причем в круге < ρ, радиусом ρ, меньшим < сходится равномерно, ряд Δ Выберем произвольную точку, удовлетворяющую условию < Обозначим q сходимости ряда следовательно M >, что M, q < В силу необходимого признака его члены стремятся к нулю при, отсюда () M M q M, Тогда, где q < (54) Ряд справа в (54) бесконечно убывающая геометрическая прогрессия со знаменателем q < Тогда из (54) следует сходимость и рассматриваемого ряда

7 ρ < достаточно в силу признака Вейерштрасса (53) В круге построить сходящийся числовой ряд, можорирующий данный ряд в рассматриваемой области Очевидно, таковым является ряд ρ M, также представляющий собой сумму бесконечной геометрической прогрессии со знаменателем, меньшим единицы Из теоремы Абеля можно вывести ряд следствий, в известной мере аналогичным следствиям из теоремы Абеля в теории степенных рядов вещественного анализа Если степенной ряд (53) расходится в некоторой точке, то он расходится и во всех точках, удовлетворяющих неравенству > Точная верхняя грань расстояний от точки, до точки, в которых сходится ряд (53) называется радиусом сходимости степенного ряда, а область <, называется кругом сходимости степенного ряда В точках границы ряд может как сходиться так и расходиться Пример Найти область сходимости ряда Δ Находим радиус сходимости по признаку Даламбера lm () и наш ряд сходится в круге < При <, те, исследуется особо В этом случае и, значит, областью абсолютной сходимости является

8 ρ < В круге любого радиуса ρ, меньшего чем радиус сходимости, степенной ряд (53) сходится равномерно 3 Внутри круга сходимости степенной ряд сходится к аналитической функции В самом деле, члены ряда u есть функции, аналитические на всей плоскости Z, ряд сходится в любой замкнутой подобласти круга сходимости Тогда по теореме Вейерштрасса сумма ряда есть аналитическая функция 4 Степенной ряд внутри круга сходимости можно почленно интегрировать и дифференцировать любое число раз, причем радиус сходимости полученных рядов равен радиусу сходимости исходного ряда 5 Коэффициенты степенного ряда (53) находятся по формулам! () () (55) Доказательство этого факта приводится методами, аналогичными методам вещественного анализа Ряд Тейлора Теорема Тейлора Нули аналитических функций Итак степенной ряд внутри круга сходимости определяет некоторую аналитическую функцию Возникает вопрос: можно ли функции, аналитической внутри некоторого круга, сопоставить степенной ряд, сходящийся в этом круге к данной функции? < Теорема 9 (Тейлора) Функция, аналитическая внутри круга, может быть представлена в этом круге сходящимся степенным рядом, причем этот ряд определен однозначно

9 Выберем произвольную точку внутри круга ρ ρ < и построим окружность ρ точке радиусом < с центром в ρ (рис), содержащую точку внутри Такое построение возможно для любой точки внутри этого круга Так как < ρ, а внутри круга < Рис аналитична, то по формуле Коши имеем π ρ () d (56) Преобразуем подынтегральное выражение: (57) <, то < Так как Поэтому второй сомножитель справа в (57) можно представить как сумму степенного ряда (прогрессии), ту которая первый член есть, а знаменатель прогрессии есть Так как, те () () (58) ρ, то ряд (58) сходится равномерно по, так как он мажорируется сходящимся числовым рядом Подставляя (58) в (56) и интегрируя почленно, получаем ρ (< ρ)

10 Введем обозначение () d () ρ π () d () π ρ () и перепишем (59) в виде сходящегося в выбранной точке степенного ряда: (59) (6) () (6) В формуле (6) окрестность ρ можно заменить, в силу теоремы Коши, любым замкнутым контуром, лежащем в области < и содержащим точку внутри Так как - произвольная точка данной области, то отсюда следует, что ряд (6) сходится к круге ρ < этот ряд сходится равномерно Итак, функция всюду внутри круга < аналитическая внутри круга <, причем в разлагается в этом круге в сходящийся степенной ряд Коэффициенты разложения (6) на основании формулы Коши для производных аналитической функции имеет вид () d () π ρ () ()! (6) Для доказательства единственности разложения (6) допустим, что имеет еще место формула разложения (), (6)

11 где также бы один коэффициент <, поэтому на основании формулы (55) Ряд (6) сходящимся в круге () () (6) Тем самым единственность определения коэффициентов доказана Разложение функции, аналитической в круге! <, что совпадает с, в сходящийся степенной ряд (6), часто называется разложением Тейлора, а сам ряд (6) Рядом Тейлора Доказанная теорема устанавливает взаимнооднозначное соответствие между функцией, аналитической в окрестности некоторой точки и степенным рядом с центром в этой точке, это означает эквивалентность конкретной аналитической функции, как функции бесконечное число раз дифференцируемой и функцией, представимой в виде суммы степенного ряда G и Заметим, наконец, что, если функция является аналитической в области G - внутренняя точка, то радиус сходимости ряда Тейлора () () () этой функции не меньше расстояния от точки до! границы области G (имеется в виду ближайшее расстояние) Пример Разложить в ряд Тейлора по степеням Δ Эта функция является аналитической на всей комплексной плоскости за исключением точек, Поэтому в круге < функция может быть ± разложена в ряд Тейлора При условии < выражение рассматриваться как сумма бесконечно убывающей прогрессии может q, q < Поэтому

12 , < Пример 3 Найти разложение в ряд Тейлора в круге < Определение по формуле (6) здесь довольно затруднительно Поэтому, представим π Так как < и <, то, используя геометрическую, получаем q q, Используя показательную форму чисел и находим окончательно 4 s π (63) Тк расстояние от центра разложения до ближайших особых точек (те до границы аналитичности) есть, то радиус сходимости ряда (63) есть Рис X Y

13 4 4 3 Пример <, 4 3 < Ближайшей к центру разложения особой точкой является точка, до которой расстояние равно, поэтому В заключение приведем основные разложения: e (<)!! 3! cos! 4 3 4! ; (<)! ; s () m 3 3! 5 5! m m m!! (<) ()! ; m(m)(m)! ; l 3 3 () 4 (<) Если для аналитической функции (), то точка называется нулем аналитической функции В этом случае разложение функции в ряд Тейлора в окрестности точки имеет вид () () тк () Если в разложении функции окрестности точки и, следовательно, разложение имеет вид, в ряд Тейлора в,

14 то точка () (), (64) называется нулем функции Если, то нуль называется простым го порядка, или кратности Из формул для коэффициентов ряда Тейлора видим, что если точка является нулем порядка, то где () () Разложение (64) можно переписать в виде, но () () () [ () ] () ϕ, ϕ () (), () ϕ, и круг сходимости этого ряда, очевидно, тот же, что и у ряда (64) Справедливо и обратное утверждение где Всякая функция вида - целое, ϕ () и нуль порядка Пример 5 Точки ± () ϕ, ϕ аналитична в точке, имеет в этой точке для функции го порядка, тк () () e (4) ϕ 3 4 e являются нулями, причем (±) Пример 6 Найти порядок нуля для функции 8 s Разложим знаменатель по степеням: 3 3! 8 5 5! ! 5! 3! 5 5! ϕ

15 5 ϕ, где ϕ, причем ϕ и точке функции 3!, так что точка 5! ϕ аналитична в является нулем 5-го порядка для исходной Ряд Лорана и его область сходимости Разложение аналитической функции в ряд Лорана Рассмотрим ряд вида () где - фиксированная точка комплексной плоскости, (65) - некоторые комплексные числа Ряд (65) носит название ряда Лорана Установим его область сходимости Для этого представим (65) в виде () () (66) () Ясно, что областью сходимости ряда (66) является общая часть областей сходимости каждого из слагаемых правой части (66) Областью сходимости ряда () является круг с центром в точке некоторого радиуса, причем в частности, может равняться нулю или бесконечности Внутри круга сходимости этот ряд сходится к некоторой аналитической функции комплексной переменной, те (), < (67)

16 Для определения области сходимости ряда переменной, положив () () Тогда этот ряд примет вид совершим замену - обычный степенной ряд, сходящийся внутри своего круга сходимости к некоторой аналитической функции ϕ () комплексной переменой Пусть радиус сходимости полученного степенного ряда есть r Тогда ϕ, < r Возвращаясь к старой переменной и полагая ϕ () () (68), > r Отсюда следует, что областью сходимости ряда область, внешняя к окружности r, получаем (69) () является Итак, каждый из степенных рядов правой части (66) сходится в своей области сходимости в соответствующей аналитической функции Если r <, то существует общая область сходимости этих рядов круговое кольцо r < <, в которой ряд (65) сходится к аналитической функции (), r < < (7) Так как ряды (67) и (68) являются обычными степенными рядами, то в указанной области функция обладает всеми свойствами суммы степенного ряда Это означает, что ряд Лорана сходится внутри своего кольца сходимости к некоторой функции, аналитической в данном кольце

17 Если r >, то ряды (67) и (68) общей области сходимости не имеют, тем самым в этом случае ряд (65) нигде не сходится к какой-либо функции Отметим, что ряд регулярной частью ряда (7), а Пример 7 Разложить - главной частью ряда (65) () а) < < ; б) > ; в) < < называется правильной частью или в ряд Лорана в кольцах: Во всех кольцах функция регулярна (аналитична) и поэтому может быть представлена рядом Лорана (доказательство этого факта в следующем пункте) Перепишем функцию в виде а) Так как <, то второе слагаемое есть сумма убывающей геометрической прогрессии Поэтому () Здесь главная часть состоит из одного слагаемого < б) в этом случае, поэтому () 3

18 В этом разложении отсутствует регулярная часть < в) Для случая < функцию также надо привести к сходящейся геометрической прогрессии, но со знаменателем Это даст: 3 Заметим, что в главной части этого разложения присутствует одно слагаемое Возникает вопрос: можно ли функции аналитической в некотором круговом кольце, сопоставить ряд Лорана, сходящийся к этой функции в данном кольце? На этот вопрос отвечает Теорема Функция, аналитическая в круговом кольце < <, однозначно представляется в этом кольце сходящимся рядом Лорана дробь На Рис 3 Δ Зафиксируем произвольную точку внутри данного кольца и контурами окружности и с центром в, радиусы которых удовлетворяют условиям < < < < < (рис 3) Согласно формуле Коши для многосвязной области имеем π () d () выполняется неравенство q, можно представить в виде d (7) Поэтому

19 Проведем в (7) почленное интегрирование, что возможно в силу равномерной сходимости ряда по, получим d π, (7) где d π, (73) Так как на выполняется неравенство, то аналогично предыдущему имеем Тогда в результате почленного интегрирования этого ряда в (7) будем иметь π π d d, (при d), (74) где d π (75) Изменив направление интегрирования в (75), получим

20 π () () d ()() d π, > (76) В силу аналитичности подынтегральных функций в (73) и (76) в круговом кольце < < в соответствии с теоремой Коши значения интегралов не изменятся при произвольной деформации контуров интегрирования в области аналитичности Это позволяет объединить формулы (73) и (76): π () d (), ±, ±, (77) где - произвольный замкнутый контур, лежащий в указанном кольце и содержащий точку внутри Возвратимся теперь к формуле (7), получим где коэффициенты () (), (78) () для всех определяются однообразной формулой (77) Так как - люба точка кольца < <, то отсюда следует, что ряд (78) сходится к внутри данного кольца причем в замкнутом кольце < < ряд сходится к равномерно Доказательство единственности разложения (78) опускаем Из полученных результатов следует, что областью сходимости ряда (78) Лорана является круговое кольцо < <, на границах которого имеется хотя бы по одной особой точке аналитической функции ряд (78), к которой сходится Замечание Формула (77) для определения коэффициентов разложения в ряд Лорана (78) не всегда практически удобна Поэтому часто прибегают к разложению рациональной дроби на простейшие с использованием геометрической прогрессии, а также используют разложение в ряд Тейлора элементарные функции Приведем примеры

21 Пример 8 Разложить ряд Лорана (те по степеням) Y в окрестности точки ()() в Δ В данном случае построим два круговых кольца с центром в точке (рис 4): а) круг «без центра» < < ; Рис 4 X б) внешность круга > В каждом из этих колец аналитична, а на границах имеет особые точки Разложим в каждой из этих областей функцию по степеням) < < ; ; [ () () () ] () < Этот ряд сходится, так как Так что ()() () () () (), ; >) Здесь имеем 3, () () () () () - сходящийся ряд, так как <

22 s В итоге ()() () () те, 3, 3 Пример 9 Разложить в ряд Лорана в окрестности точки функцию Δ Имеем:, s s s cos cos s s! cos 4 () () 3 4! 3! () 5! () (s cos)!! 5


Тема Комплексные числовые ряды Рассмотрим числовой ряд k ak с комплексными числами вида Ряд называется сходящимся, если сходится последовательность S его частичных сумм S a k k. При этом предел S последовательности

Тема Функциональные комплексные ряды Определение. Если выполняется сразу k, N, N U k G сходящимся в области G., то ряд называется равномерно Достаточным признаком равномерной сходимости ряда является признак

ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Математический анализ Раздел: Теория функций комплексного переменного Тема: Ряды в комплексной плоскости Лектор Янущик О.В. 217 г. 9. Ряды в комплексной плоскости 1. Числовые ряды Пусть задана последовательность

5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида (a + a) + a () + K + a () + K a) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u () u () u () u (), 1 2 u () где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции..окрестность бесконечно удаленной точки.....разложение Лорана в окрестности бесконечно удаленной точки.... 3.Поведение

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Национальный исследовательский Нижегородский государственный университет им НИ Лобачевского НП Семерикова АА Дубков АА Харчева РЯДЫ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной. Основные

В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Тема Ряд Лорана и его область сходимости. Рассмотрим ряд вида n C n n C n n n n C n n где - фиксированная точка комплексной плоскости, - некоторые комплексные числа. C n Этот ряд называется рядом Лорана.

ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

4 Ряды аналитических функций 4. Функциональные последовательности Пусть Ω C и f n: Ω C. Последовательность функций {f n } сходится поточечно к функции f: Ω C, если для каждого z Ω lim n f n(z) = f(z).

Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k (k 1 Функциональным рядом называется

Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа, члены ряда (зависят

Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =, х =,

Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a(a) a(a) a(a) (), где

Лекция 8 Ряды и особые точки. Ряд Лорана. Изолированные особые точки. 6. Ряды и особые точки 6.7. Ряд Лорана Теорема (П. Лоран): Если функция f () аналитична в кольце r< a < R r R то она может быть разложена

Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,...,... R... называются центром Степенные ряды Общий член степенного

4 Функциональные ряды 4 Основные определения Пусть задана бесконечная последовательность функций с общей областью определения X u), u (), K, u (),K (ОПРЕДЕЛЕНИЕ Выражение u) + u () + K + u () +

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Тема Ряд Лорана и его область сходимости. Ряд вида где C (z z) n = C (z z) n + n n n= n= z плоскости, - фиксированная точка комплексной C n называется рядом Лорана. C n (z z) n= - некоторые комплексные

Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u (x) + u + K+ u + K = Придавая x определенное значение x, мы

ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Лекция. Степенные ряды. Гармонический анализ; ряды и преобразование Фурье. Свойство ортогональности.8. Общие функциональные ряды.8.. Уклонение функций Ряд U + U + U называется функциональным, если его

Старков В.Н. Материалы к установочной лекции Вопрос 9. Разложение аналитических функций в степенные ряды Определение. Функциональный ряд вида (((... (..., где комплексные постоянные (коэффициенты ряда

Сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Практическое занятие 8 Вычеты 8 Определение вычета 8 Вычисление вычетов 8 Логарифмический вычет 8 Определение вычета Пусть изолированная особая точка функции в изолированной особой Вычетом аналитической

~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен научиться: находить тригонометрическую и показательную формы комплексного числа по

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция 3. Вычеты. Основная теорема о вычетах Вычетом функции f() в изолированной особой точке а называется комплексное число равное значению интеграла f () 2 взятого в положительном направлении i по окружности

Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

С А Лавренченко wwwlawreceoru Лекция Представление функций рядами Тейлора Один полезный предел На прошлой лекции была разработана следующая стратегия: по достаточному условию представимости функции рядом

М. В. Дейкалова КОМПЛЕКСНЫЙ АНАЛИЗ Вопросы к экзамену (группа МХ-21, 215) Вопросы первого коллоквиума 1 1. Дифференцируемость функции комплексного переменного в точке. Условия Коши Римана (Даламбера Эйлера).

Вариант Задача Вычислить значение функции ответ дать в алгебраической форме: а sh ; б l Решение а Воспользуемся формулой связи между тригонометрическим синусом и гиперболическим синусом: ; sh -s Получим

Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,

4. Функциональные ряды, область сходимости Областью сходимости функционального ряда () называется множество значений аргумента, для которых этот ряд сходится. Функция (2) называется частичной суммой ряда;

Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f () d =, () = Функция f (,) задана в области G плоскости (,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

{функциональные ряды степенные ряды область сходимости порядок нахождения интервала сходимости - пример радиус интервала сходимости примеры } Пусть задана бесконечная последовательность функций, Функциональные

С А Лавренченко wwwlawrecekoru Лекция Представление функций степенными рядами Введение Представление функций степенными рядами оказывается полезным при решении следующих задач: - интегрирование функций

Е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: (89 () n n (n!)) p (n +)! n= Ряд Тейлора f(x)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Методическая разработка Решение задач по ТФКП Комплексные числа Операции над комплексными числами Комплексная плоскость Комплексное число можно представить в алгебраической и тригонометрической экспоненциальной

Сибирский математический журнал Июль август, 2005. Том 46, 4 УДК 517.53 УСЛОВИЯ СХОДИМОСТИ ИНТЕРПОЛЯЦИОННЫХ ДРОБЕЙ ПРИ УЗЛАХ, ОТДЕЛЕННЫХ ОТ ОСОБЫХ ТОЧЕК ФУНКЦИИ А. Г. Липчинский Аннотация: Рассматривается

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО, CА ИЗОТОВА, ЛА МАЛЫШЕВА РЯДЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

21.2 Числовые ряды (ЧР):

Пусть z 1 , z 2 ,…, z n - последовательность комплексных чисел, где

Опр 1. Выражение видаz 1 +z 2 +…+z n +…=(1)называется ЧР в комплексной области, причем z 1 , z 2 ,…, z n – члены числового ряда, z n – общий член ряда.

Опр 2. Сумма n первых членов комплексного ЧР:

S n =z 1 +z 2 +…+z n называется n-ной частичной суммой этого ряда.

Опр 3. Если существует конечный предел при nпоследовательности частичных сумм S n числового ряда, то ряд называется сходящимся , приэтом само число S называется суммой ЧР. В противном случае ЧР называется расходящимся .

Исследование сходимости ЧР с комплексными членами сводится к исследованию рядов с действительными членами.

Необходимый признак сходимости:

сходится

Опр4. ЧР называется абсолютно сходящимся , если сходится ряд из модулей членов исходного ЧР: |z 1 |+|z 2 |+…+| z n |+…=

Этот ряд называется модульным, где |z n |=

Теорема (об абсолютной сходимости ЧР): если модульный ряд , то сходится и ряд .

При исследовании сходимости рядов с комплексными членами применяют все известные достаточные признаки сходимости знакоположительных рядов с действительными членами, а именно, признаки сравнения, Даламбера, радикальный и интегральный признаки Коши.

21.2 Степенные ряды (СР):

Опр5. СР в комплексной плоскости называется выражение вида:

c 0 +c 1 z+c 2 z 2 +…+c n z n =, (4) где

c n – коэффициенты СР (комплексные или действительные числа)

z=x+iy – комплексная переменная

x, y – действительные переменные

Также рассматривают СР вида:

c 0 +c 1 (z-z 0)+c 2 (z-z 0) 2 +…+c n (z-z 0) n +…=,

Который называется СР по степеням разности z-z 0 , где z 0 фиксированное комплексное число.

Опр 6. Множество значений z, при которых СР сходится называется областью сходимости СР.

Опр 7. Сходящийся в некоторой области СР называется абсолютно (условно) сходящимся , если сходится (расходится) соответствующий модульный ряд.

Теорема (Абеля): Если СР сходится при z=z 0 ¹0 (в точке z 0), то он сходится, и притом абсолютно для всех z, удовлетворяющих условию: |z|<|z 0 | . Если же СР расходится при z=z 0 ,то он расходится при всех z, удовлетворяющих условию |z|>|z 0 |.

Из теоремы следует, что существует такое число R, называемое радиусом сходимости СР , такое, что для всех z, для которых |z|R – СР расходится.

Областью сходимости СР является внутренность круга |z|

Если R=0, то СР сходится только в точке z=0.



Если R=¥, то областью сходимости СР является вся комплексная плоскость.

Областью сходимости СР является внутренность круга |z-z 0 |

Радиус сходимости СР определяется формулами:

21.3 Ряд Тейлора:

Пусть функция w=f(z) аналитична в круге z-z 0

f(z)= =C 0 +c 1 (z-z 0)+c 2 (z-z 0) 2 +…+c n (z-z 0) n +…(*)

коэффициенты которой вычисляются по формуле:

c n =, n=0,1,2,…

Такой СР (*) называется рядом Тейлора для функции w=f(z) по степеням z-z 0 или в окрестности точки z 0 . С учетом обобщенной интегральной формулы Коши коэффициенты ряда (*) Тейлора можно записать в виде:

C – окружность с центром в точке z 0 , полностью лежащая внутри круга |z-z 0 |

При z 0 =0 ряд (*) называется рядом Маклорена . По аналогии с разложениями в ряд Маклорена основных элементарных функций действительного переменного можно получить разложения некоторых элементарных ФКП:

Разложения 1-3 справедливы на всей комплексной плоскости.

4). (1+z) a = 1+

5). ln(1+z) = z-

Разложения 4-5 справедливы в области |z|<1.

Подставим в разложение для e z вместо z выражение iz:

(формула Эйлера )

21.4 Ряд Лорана:

Ряд с отрицательными степенями разности z-z 0:

c -1 (z-z 0) -1 +c -2 (z-z 0) -2 +…+c -n (z-z 0) -n +…=(**)

Подстановкой ряд (**) превращается в ряд по степеням переменной t: c -1 t+c -2 t 2 +…+c - n t n +… (***)

Если ряд (***) сходится в круге |t|r.

Образуем новый ряд как сумму рядов (*) и (**) изменяя n от -¥ до +¥.

…+c - n (z-z 0) - n +c -(n -1) (z-z 0) -(n -1) +…+c -2 (z-z 0) -2 +c -1 (z-z 0) -1 +c 0 +c 1 (z-z 0) 1 +c 2 (z-z 0) 2 +…

…+c n (z-z 0) n = (!)

Если ряд (*) сходится в области |z-z 0 |r, то областью сходимости ряда (!) будет общая часть этих двух областей сходимости, т.е. кольцо (r<|z-z 0 |кольцом сходимости ряда .

Пусть функция w=f(z) – аналитическая и однозначная в кольце (r<|z-z 0 |

коэффициенты которой определяются по формуле:

C n = (#), где

С – окружность с центром в точке z 0 , которая полностью лежит внутри кольца сходимости.

Ряд (!) называется рядом Лорана для функции w=f(z).

Ряд Лорана для функции w=f(z) состоит из 2-х частей:

Первая часть f 1 (z)= (!!) называется правильной частью ряда Лорана. Ряд (!!) сходится к функции f 1 (z) внутри круга |z-z 0 |

Вторая часть ряда Лорана f 2 (z)= (!!!) - главная часть ряда Лорана. Ряд (!!!) сходится к функции f 2 (z) вне круга |z-z 0 |>r.

Внутри кольца ряд Лорана сходится к функции f(z)=f 1 (z)+f 2 (z). В некоторых случаях или главная, или правильная часть ряда Лорана может или отсутствовать, или содержать конечное число членов.

На практике для разложения функции в ряд Лорана обычно не вычисляют коэффициенты С n (#), т.к. она приводит к громоздким вычислениям.

На практике поступают следующим образом:

1). Если f(z) – дробно-рациональная функция, то ее представляют в виде суммы простых дробей, при этом дробь вида , где a-const раскладывают в ряд геометрической прогрессии с помощью формулы:

1+q+q 2 +q 3 +…+=, |q|<1

Дробь вида раскладывают в ряд, который получается дифференцированием ряда геометрической прогрессии (n-1) раз.

2). Если f(z) – иррациональная или трансцендентная, то используют известные разложения в ряд Маклорена основных элементарных ФКП: e z , sinz, cosz, ln(1+z), (1+z) a .

3). Если f(z) – аналитическая в бесконечно удаленной точке z=¥, то подстановкой z=1/t задача сводится к разложению функции f(1/t) в ряд Тейлора в окрестности точки 0, при этом z-окрестностью точки z=¥ считается внешность круга с центром в точке z=0 и радиусом равным r (возможно r=0).

Л.1 ДВОЙНОЙ ИНТЕГРАЛ В ДЕКАТОВЫХ КООРД.

1.1 Основные понятия и определения

1.2 Геометрический и физический смысл ДВИ.

1.3 основные свойства ДВИ

1.4 Вычисление ДВИ в декартовых координатах

Л.2 ДВИ в ПОЛЯРНЫХ КООРДИНАТАХ.ЗАМЕНА ПЕРЕМЕННЫХ в ДВИ.

2.1 Замена переменных в ДВИ.

2.2 ДВИ в полярных координатах.

Л.3Геометрические и физические приложения ДВИ.

3.1 Геометрические приложения ДВИ.

3.2 Физические приложения двойных интегралов.

1.Масса. Вычисление массы плоской фигуры.

2.Вычисление статических моментов и координат центра тяжести(центра масс) пластины.

3. Вычисление моментов инерции пластины.

Л.4ТРОЙНОЙ ИНТЕГРАЛ

4.1 ТРИ:основные понятия. Теорема существования.

4.2 Основные св-ва ТРИ

4.3 Вычисление ТРИ в декартовых координатах

Л.5 КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПО КООРДИНАТАМ II РОДА – КРИ-II

5.1 Основные понятия и определения КРИ-II, теорема существования

5.2 Основные свойства КРИ-II

5.3 Вычисление КРИ – II для различных форм задания дуги АВ.

5.3.1 Параметрическое задание пути интегрирования

5.3.2. Явное задание кривой интегрирования

Л. 6. СВЯЗЬ МЕЖДУ ДВИ и КРИ. СВ-ВА КРИ II-го РОДА СВЯЗАННЫЕ с ФОРМОЙ ПУТИ ИНТЕГР.

6.2. Формула Грина.

6.2. Условия (критерии) равенства нулю контурного интеграла.

6.3. Условия независимости КРИ от формы пути интегрирования.

Л. 7Условия независимости КРИ 2-го рода от формы пути интегрирования (продолжение)

Л.8 Геометрическая и физические приложения КРИ 2-го рода

8.1 Вычесление S плоской фигуры

8.2 Вычисление работы переменой силы

Л.9 Поверхностные интегралы по площади поверхности (ПВИ-1)

9.1. Основные понятия, теорема существования.

9.2. Основные свойства ПВИ-1

9.3.Гладкие поверхности

9.4.Вычисление ПВИ-1 свидением к ДВИ.

Л.10. ПОВЕРХН. ИНТЕГРАЛЫ по КООРД.(ПВИ2)

10.1. Классификация гладких поверхностей.

10.2. ПВИ-2: определение, теорема существования.

10.3. Основные свойства ПВИ-2.

10.4. Вычисление ПВИ-2

Лекция № 11.СВЯЗЬ МЕЖДУ ПВИ, ТРИ и КРИ.

11.1.Формула Остроградского-Гаусса.

11.2 Формула Стокса.

11.3. Применение ПВИ к вычислению объёмов тел.

ЛК.12 ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

12.1 Теор. Поля, осн. Понятия и определения.

12.2 Скалярное поле.

Л. 13 ВЕКТОРНОЕ ПОЛЕ (ВП) И ЕГО ХАР-КИ.

13.1 Векторные линии и векторные поверхности.

13.2 Поток вектора

13.3 Дивергенция поля. Формула Остр.-Гаусса.

13.4 Циркуляция поля

13.5 Ротор (вихрь) поля.

Л.14 СПЕЦ. ВЕКТОРНЫЕ ПОЛЯ И ИХ ХАР-КИ

14.1 Векторные дифференциальные операции 1 порядка

14.2 Векторные дифференциальные операции II – порядка

14.3 Соленоидальное векторное поле и его свойства

14.4 Потенциальное (безвихревое) ВП и его свойства

14.5 Гармоническое поле

Л.15 ЭЛЕМЕНТЫ ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО. КОМПЛЕКСНЫЕ ЧИСЛА(К/Ч).

15.1. К/ч определение, геометрическое изображение.

15.2 Геометрическое представление к/ч.

15.3 Операция над к/ч.

15.4 Понятие расширенной комплексной z-пл.

Л.16 ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ КОМПЛЕКСНЫХ ЧИСЕЛ. Функция комплексного переменного (ФКП) и её приделы.

16.1. Последовательность комплексных чисел определение, критерий существования.

16.2 Арифметические свойства приделов комплексных чисел.

16.3 Функция комплексного переменного: определение, непрерывность.

Л.17 Основные элементарные ф-ции комплексного переменного (ФКП)

17.1. Однозначные элементарные ФКП.

17.1.1. Степенная ф.-ция: ω=Z n .

17.1.2. Показательная ф.-ция: ω=e z

17.1.3. Тригонометрические ф.-ции.

17.1.4. Гиперболические ф.-ции (shZ, chZ, thZ, cthZ)

17.2. Многозначные ФКП.

17.2.1. Логарифмическая ф.-ция

17.2.2. arcsin числа Z наз. число ω,

17.2.3.Обобщенная степенная показательная ф.-ция

Л.18Дифференцирование ФКП. Аналитич. ф-ия

18.1. Производная и дифференциал ФКП: основные понятия.

18.2. Критерий дифференцируемости ФКП.

18.3. Аналитическая функция

Л. 19 ИНТЕГРАЛЬНОЕ ИСЧЕСЛЕНИЕ ФКП.

19.1 Интеграл от ФКП(ИФКП):опр., сведение КРИ, теор. существ.

19.2 О существов. ИФКП

19.3 Теор. Коши

Л.20. Геометрический смысл модуля и аргумента производной. Понятие о конформном тображении.

20.1 Геометрический смысл модуля производной

20.2 Геометрический смысл аргумента производной

Л.21. Ряды в комплексной области.

21.2 Числовые ряды (ЧР)

21.2 Степенные ряды (СР):

21.3 Ряд Тейлора

Определение: Числовым рядом комплексных чисел z 1, z 2, …, z n , … называется выражение вида

z 1 + z 2 + …, z n + … = , (3.1)

где z n называют общим членом ряда.

Определение: Число S n = z 1 + z 2 + …, z n называется частичной суммой ряда.

Определение: Ряд (1) называется сходящимся, если сходится последовательность {S n } его частичных сумм. Если же последовательность частичных сумм расходится, то и ряд называют расходящимся.

Если ряд сходится, то число S = называется суммой ряда (3.1).

z n = x n + iy n ,

то ряд (1) записывается в виде

= + .

Теорема: Ряд (1) сходится тогда и только тогда, когда сходятся ряды и , составленные из действительных и мнимых частей членов ряда (3.1).

Эта теорема позволяет перенести признаки сходимости рядом с действительными членами на ряды с комплексными членами (необходимый признак, признак сравнения, признак Д’Аламбера, Коши и др.).

Определение. Ряд (1) называется абсолютно сходящимся, если сходится ряд , составленный из модулей его членов.

Теорема. Для абсолютной сходимости ряда (3.1) необходимо и достаточно, чтобы абсолютно сходились ряды и .

Пример 3.1. Выяснить характер сходимости ряда

Решение.

Рассмотрим ряды

Покажем, что эти ряды сходятся абсолютно. Для этого докажем, что ряды

Сходятся.

Так как , то вместо ряда возьмём ряд . Если последний ряд сходится, то по признаку сравнения сходится и ряд .

Сходимость рядов и доказывается с помощью интегрального признака.

Это значит, что ряды и сходится абсолютно и, согласно последней теореме, исходный ряд сходится абсолютно.


4. Степенные ряды с комплексными членами. Теорема Абеля о степенных рядах. Круг и радиус сходимости.

Определение. Степенным рядом называется ряд вида

где …, – комплексные числа, называемые коэффициентами ряда.

Областью сходимости ряда (4.I) является круг .

Для отыскания радиуса сходимости R данного ряда, содержащего все степени , используют одну из формул:

Если ряд (4.1) содержит не все степени , то для отыскания нужно непосредственно использовать признак Д’Аламбера или Коши.

Пример 4.1. Найти круг сходимости рядов:

Решение:

а) Для отыскания радиуса сходимости этого ряда воспользуемся формулой

В нашем случае

Отсюда круг сходимости ряда задается неравенством

б) Для отыскания радиуса сходимости ряда используем признак Д’Аламбера.

Для вычисления предела дважды использовали правило Лопиталя.

По признаку Д’Аламбера ряд будет сходиться, если . Отсюда имеем круг сходимости ряда .


5. Показательная и тригонометрические функции комплексной переменной.

6. Теорема Эйлера. Формулы Эйлера. Показательная форма комплексного числа.

7. Теорема сложения. Периодичность показательной функции.

Показательная функция и тригонометрические функции и определяются как суммы соответствующих степенных степенных рядов, а именно:

Эти функции связаны формулами Эйлера:

называемые, соответственно, гиперболическим косинусом и синусом, связаны с тригонометрическим косинусом и синусом формулами

Функции , , , определяются как и в действительном анализе.

Для любых комплексных чисел и имеет место теорема сложения:

Всякое комплексное число может быть записано в показательной форме:

– его аргумент.

Пример 5.1. Найти

Решение.

Пример 5.2. Представьте число в показательной форме.

Решение.

Найдем модуль и аргумент этого числа:

Тогда получим


8. Предел, непрерывность и равномерная непрерывность функций комплексной переменной.

Пусть Е – некоторое множество точек комплексной плоскости.

Определение. Говорят, что на множестве Е задана функция f комплексной переменной z, если каждой точке z E по правилу f поставлено в соответствие одно или несколько комплексных чисел w (в первом случае функция называется однозначной, во втором – многозначной). Обозначим w = f(z) . E – область определения функции.

Всякую функцию w = f(z) (z = x + iy) можно записать в виде

f(z) = f(x + iy) = U(x, y) + iV(x, y).

U(x, y) = R f(z) называют действительной частью функции, а V(x, y) = Im f(z) – мнимой частью функции f(z).

Определение. Пусть функция w = f(z) определена и однозначна в некоторой окрестности точки z 0 , исключая, может быть, саму точку z 0 . Число А называется пределом функции f(z) в точке z 0 , если для любого ε > 0 можно указать такое число δ > 0, что для всех z = z 0 и удовлетворяющих неравенству |z – z 0 | < δ , будет выполнятся неравенство | f(z) – A| < ε.

Записывают

Из определения следует, что z → z 0 произвольным образом.

Теорема. Для существования предела функции w = f(z) в точке z 0 = x 0 + iy 0 необходимо и достаточно существование пределов функции U(x, y) и V(x, y) в точке (x 0 , y 0).

Определение. Пусть функция w = f(z) определена и однозначна в некоторой окрестности точки z 0 , включая саму эту точку. Функция f(z) называется непрерывной в точке z 0 , если

Теорема. Для непрерывности функции в точке z 0 = x 0 + iy 0 необходимо и достаточно, чтобы были непрерывны функции U(x, y) и V(x, y) в точке (x 0 , y 0).

Из теорем следует, что простейшие свойства, относящиеся к пределу и непрерывности функций действительных переменных, переносятся на функции комплексной переменной.

Пример 7.1. Выделить действительную и мнимую части функции .

Решение.

В формулу, задающую функцию, подставим

К нулю по двум различным направлениям, функция U(x, y) имеет разные пределы. Это значит, что в точке z = 0 функция f(z) предела не имеет. Далее, функция f(z) определена в точках, где .

Пусть z 0 = x 0 +iy 0 , одна из таких точек.

Это значит, что в точках z = x +iy при y 0 функция непрерывна.


9. Последовательности и ряды функций комплексной переменной. Равномерная сходимость. Непрерывность степенного ряда.

Определение сходящейся последовательности и сходящегося ряда функций комплексной переменной равномерной сходимости, соответствующие теории о равной сходимости, непрерывности предела последовательности, суммы ряда формируются и доказываются точно так же, как и для последовательностей и рядов функций действительной переменной.

Приведём необходимые для дальнейшего факты, касающиеся функциональных рядов.

Пусть в области D определена последовательность однозначных функций комплексной переменной {fn (z)}. Тогда символ:

Называется функциональным рядом .

Если z0 принадлежит D фиксировано, то ряд (1) будет числовым.

Определение. Функциональный ряд(1) называется сходящимся в области D , если для любогоz принадлежащего D , соответствующий ему числовой ряд сходится.

Если ряд (1) сходится в областиD , то в этой области можно определить однозначную функцию f(z) , значение которой в каждой точке z принадлежащей D равно сумме соответствующего числового ряда. Эту функцию называют суммой ряда (1) в области D .

Определение. Если

для любогоz принадлежащего D, выполняется неравенство:

то ряд (1) называется равномерно сходящимся в области D .

РЯДЫ

Числовые ряды

Пусть задана последовательность комплексных чисел z n = х п + + it/ n , п= 1,2,... Числовым рядом называется выражение вида

Числа 21,2-2,... называются членами ряда. Отметим, что выражение (19.1), вообще говоря, нельзя рассматривать как сумму, поскольку невозможно выполнить сложение бесконечного числа слагаемых. Но если ограничиться конечным числом членов ряда (например, взять первые п членов), то получится обычная сумма, которую можно реально вычислить (каково бы ни было п). Сумма 5„ первых и членов ряда называется п-й частичной (частной) суммой ряда:

Ряд (19.1) называется сходящимся, если существует конечный предел п-х частичных сумм при п -? оо, т.е. существует

Число 5 называется суммой ряда. Если lirn S n не существует или

равен ос, то ряд (19.1) называется расходящимся.

Тот факт, что ряд (19.1) сходится и его сумма равна 5, записывается в виде

Эта запись не означает, что были сложены все члены ряда (это сделать невозможно). В то же время, сложив достаточно много членов ряда, можно получить частичные суммы, сколь угодно мало отклоняющиеся от S.

Следующая теорема устанавливает связь между сходимостью ряда с комплексными членами z n = х п + iy n и рядов с действительными членами х п и у и.

Теорема 19.1. Для сходимости ряда (19.1) необходимо и до-

статочно , чтобы сходились два ряда ? х п и ? с действительных П=1

ними йенами. При этом для равенства ? z n = (Т + ir необходимо

и достаточно, чтобы ? х п =

Доказательство. Введем обозначения для частичных сумм рядов:

Тогда S n = о п + ir n . Воспользуемся теперь теоремой 4.1 из §4: для того чтобы последовательность S n = + ir n имела предел S = = сг + ir, необходимо и достаточно, чтобы последовательности {т п } имели предел, причем liiri = о, lim т п = т. Отсюда и сле-

п-юс л->оо

дует нужное утверждение, поскольку существование пределов последовательностей {S„}, {(7 п } и {т п } равносильно сходимости рядов

ОС" ОС" ОС"

? Z n , ? Х п и? у п соответственно.

Л = 1 Л=1 П=1

С помощью теоремы 19.1 многие важные свойства и утверждения, справедливые для рядов с действительными членами, сразу переносятся на ряды с комплексными членами. Перечислим некоторые из этих свойств.

1°. Необходимый признак сходимости. Если ряд? z n сходится,

то lim z n = 0. (Обратное утверждение неверно: из того что lim z n =

л-юо я->оо

0, не следует, что ряд? z n сходится.)

2°. Пусть ряды? z n и? w n с комплексными членами сходятся

и их суммы равны S и о соответственно. Тогда ряд? (z n + w n) тоже

сходится и его сумма равна S + о.

3°. Пусть ряд ]? z n сходится и его сумма равна S. Тогда для

любого комплексного числа Л ряд? (Az n) тоже сходится и его сумма

4°. Если отбросить или добавить к сходящемуся ряду конечное число членов, то получится также сходящийся ряд.

5°. Критерий сходимости Коши. Для сходимости ряда? z n

необходимо и достаточно, чтобы для любого числа е > 0 существовало такое число N (зависящее от е), что при всех п > N и при всех

р ^ 0 выполнено неравенство ^2 z k

Так же как и для рядов с действительными членами, вводится понятие абсолютной сходимости.

Ряд z n называется абсолютно сходящимся, если сходится ряд

71 - 1

составленный из модулей членов данного ряда %2 z n

Теорема 19.2. Если сходится ряд ^2 |*п|» то ряд ^2 z n также

сходится.

(Другими словами, если ряд сходится абсолютно, то он сходится.)

Доказательство. Поскольку критерий сходимости Коши применим к рядам с произвольными комплексными членами, то он

применим, в частности, и к рядам с действительными членами. Возь-

мем произвольное е > 0. Так как ряд JZ Iz„ | сходится, то в силу кри-

терпя Коши, примененного к этому ряду, найдется такое число N, что при всех п > N и при всех р ^ 0

В § 1 было показано, что z + w ^ |з| + |ш| для любых комплексных чисел z и w; это неравенство легко распространяется на любое конечное число слагаемых. Поэтому


Итак, для любого е > 0 найдется число N, такое что при всех п >

Итак, для любого е > 0 найдется число N, такое что при всех п >

> N и при всех р ^ 0 выполнено неравенство J2 z k

но критерию Коши, ряд Y2 z n сходится, что и требовалось доказать.

Из курса математического анализа известно (см., например, или )), что утверждение, обратное теореме 19.2, неверно даже для рядов с действительными членами. А именно: из сходимости ряда не следует его абсолютная сходимость.

Ряд J2 г п называется условно сходящимся , если этот ряд сходит-

ся, а ряд ^2 z n i составленный из модулей его членов, расходится.

Ряд z n является рядом с действительными неотрицательными

ми членами. Поэтому к этому ряду применимы признаки сходимости, известные из курса математического анализа. Напомним без доказательства некоторые из них.

Признаки сравнения. Пусть числа z u и w n начиная с некоторого номера N удовлетворяют неравенствам z n ^ |w n |, п = = N, N + 1,... Тогда:

1) если ряд ^2 |w n | сходится , то и ряд z n сходится:

2) если ряд ^2 Ы расходится , то и ряд ^2 1 ш «1 расходится.

Признак Даламбера. Пусть существует предел

Тогда:

если I 1, то ряд Y2 z n сходится абсолютно:

если I > 1, то ряд ^2 z n расходится.

При / = 1 “Р адикальн ы й” признак Коши. Пусть существует

предел lim /z n = /. Тогда:

если I 1, то ряд z n сходится абсолютно ;

если I > 1, то ряд 5Z z n расходится.

При I = 1 признак не дает ответа на вопрос о сходимости ряда. Пример 19.3. Исследовать сходимость рядов


Решен и е. а) По определению косинуса (см. (12.2))

Поэтому

00 1 (е п

Применим признак Даламбера к ряду Y1 о (о) :

Значит, ряд ^ - (-) расходится. (Расходимость этого ряда следует

п= 1 2 " 2 "

также из того, что его члены не ст!>емятся к нулю и, следовательно, необходимое условие сходимости не выполнено. Можно воспользоваться и тем, что члены ряда образуют геометрическую прогрессию

со знаменателем q = е/2 > 1.) По признаку сравнения ряд 51 0п

так же расход и тся.

б) Покажем, что величины cos(? -f п) ограничены одним и тем же числом. Действительно,

| cos (г 4- п) = | cos i cos n - sin i sin 7i| ^

^ | cosi || cos 7?| 4-1 sinг|| sin 7?.| ^ | cosi| 4-1 sin i| = А/, где M - положительная постоянная. Отсюда

Ряд 5Z сх °дится. Значит, по признаку сравнения, ряд

cos (i 4" ii)

также сходится. Следовательно, исходный ряд 51 -~^т 1 -~ сходится

ft -1 2 ”

абсолютно.

Ряд 5Z z ki полученный из ряда 51 z k отбрасыванием первых п

к=п+1 к =1

членов, называется остатком (п-м остатком) ряда 51 z k- В случае

сходимости так же называется и сумма

Легко видеть, что 5 = 5„ + г„, где 5 - сумма, a S n - частичная сумма

ряда ^ Zf{- Отсюда сразу следует, что если ряд сходится , то его

п-й остаток стремится к пулю при п -> оо. Действительно, пусть

ряд У2 z k сходится, т.е. lirn 5„ = 5. Тогда lim г п = lim (5 - 5„) =

ft-I П ->00 П->00 «->00