Водород - неорганическое вещество, первый и самый легкий элемент таблицы Менделеева. Обозначается буквой H (Hydrogenium), переводится с греческого как «рождающий воду».

В природе существует три устойчивых атома водорода:
протий - стандартный вариант атома, состоящий из протона и электрона;
дейтерий - состоит из протона, нейтрона и электрона;
тритий - в ядре протон и два нейтрона.

Водорода на Земле достаточно много. Если исходить из числа атомов, то его примерно 17%. Больше лишь кислорода - около 52%. И это только в коре земли и атмосфере - ученые не знают, сколько его в мантии и ядре планеты. На Земле водород находится преимущественно в связанном состоянии. Он часть воды, всех живых клеток, природного газа, нефти, угля, некоторых горных пород и минералов. В несвязанном состоянии его можно обнаружить в вулканических газах, в продуктах разложения органики.

Свойства

Самый легкий газ. Не имеет цвета, вкуса и запаха. В воде плохорастворим, хорошо - в этаноле, во многих металлах, например, в железе, титане, палладии - в одном объеме палладия может раствориться 850 объемов Н2. Не растворяется в серебре. Лучше всех газов проводит тепло. При сильном охлаждении преобразуется в очень подвижную текучую бесцветную жидкость, и далее в твердое снегообразное вещество. Интересно, что жидкое состояние элемент сохраняет в очень узком температурном диапазоне: от −252,76 до −259,2 °C. Предполагается, что твердый водород при гигантских давлениях в сотни тысяч атмосфер приобретет металлические свойства. При высоких температурах вещество проникает сквозь мельчайшие поры металлов и сплавов.

Водород - важный биогенный элемент. Образует воду, содержится во всех живых тканях, в амино- и нуклеиновых кислотах, белках, липидах, жирах, углеводах.

С точки зрения химии, водород обладает уникальной особенностью - его относят сразу к двум группам таблицы Менделеева: к щелочным металлам и галогенам. Как щелочной металл, проявляет сильные восстановительные свойства. Реагирует с фтором при обычных условиях, с хлором - под действием света, с другими неметаллами - только при нагревании или в присутствии катализаторов. Вступает в реакции с кислородом, азотом, серой, углеродом, галогенами, угарным газом и др. Образует такие важные соединения как аммиак, сероводород, углеводороды, спирты, фтороводород (фтористоводородную кислоту) и хлороводород (соляную кислоту). При взаимодействии с оксидами и галогенидами металлов восстанавливает их до металлов; это свойство используется в металлургии.

Как галоген Н2 проявляет окислительные свойства при взаимодействии с металлами.

Во Вселенной водорода 88,6%. Большей частью он содержится в звездах и межзвездном газе.

Из-за своей легкости молекулы вещества двигаются с огромными скоростями, сопоставимыми со второй космической скоростью. Благодаря этому его теплопроводность превышает теплопроводность воздуха в 7,3 раза. Из верхних частей атмосферы молекулы Н2 легко улетают в космос. Таким образом наша планета теряет 3 кг водорода каждую секунду.

Техника безопасности

Водород нетоксичен, но пожаро- и взрывоопасен. Смесь с воздухом (гремучий газ) легко взрывается от малейшей искры. Сам водород горит. Это следует учитывать при его получении для лабораторных нужд или при проведении опытов, в ходе которых выделяется водород.

Пролив жидкий водород на кожу, можно получить серьезное обморожение.

Применение

В химпроме с помощью Н2 производят аммиак , спирты, соляную кислоту, мыло, полимеры, искусственное топливо, многие орг.вещества.
В нефтеперерабатывающей индустрии - для получения из нефти и нефтяных остатков различных производных (дизельного топлива, смазочных масел, бензинов, сжиженных газов и др.); для очистки нефтепродуктов, смазочных масел.
В пищепроме: при изготовлении твердых маргаринов методом гидрогенизации из растительных масел; используется как газ для упаковок некоторых продуктов (добавка Е949).
В металлургии в процессах получения металлов и сплавов. Для атомно-водородной (t пламени доходит до +4000 °С) и кислородно-водородной (до +2800 °С) резки и сварки жаростойких сталей и сплавов.
В метеорологии веществом наполняют воздушные зонды и шары.
Как топливо для ракет.
Как охладитель для крупных электрогенераторов.
В стекольной индустрии для выплавки кварцевого стекла в высокотемпературном пламени.
В газовой хроматографии; для заполнения (жидким Н2) пузырьковых камер.
Как хладагент в криогенных вакуумных насосах.
Дейтерий и тритий используются в атомной энергетике и военном деле.

Водород (лат. hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса.

Историческая справка. В трудах химиков 16 и 17 вв. неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона , Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrog e ne (от греч. h y d o r - вода и genn a o - рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

Распространённость в природе . В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли . В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного h 2 , метана ch 4 , аммиака nh 3 , воды h 2 o, радикалов типа ch, nh, oh, sih, ph и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1 h), и тяжёлого В., или дейтерия (2 h, или d). В природных соединениях В. на 1 атом 2 h приходится в среднем 6800 атомов 1 h. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3 h, или Т), с мягким?-излучением и периодом полураспада t 1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4 · 10 -15 % от общего числа атомов В.). Получен крайне неустойчивый изотоп 4 h. Массовые числа изотопов 1 h, 2 h, 3 h и 4 h, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4 h - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв . Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н - ; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв . Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра . Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. h 2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210 · 10 -19 дж ). Межатомное расстояние при равновесном положении ядер равно 0,7414 · a . При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы h 2 .

Физические и химические свойства . В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм . В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм ), критическая плотность 0,0312 г/см 3 . Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/ (м · К ), т. е. 4,16 · 0 -4 кал/ (с · см · °С ). Удельная теплоёмкость В. при 0°С и 1 атм С р 14,208 · 10 3 дж/ (кг · К ), т. е. 3,394 кал/ (г · °С ). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм ), но хорошо - во многих металлах (ni, pt, pd и др.), особенно в палладии (850 объёмов на 1 объём pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при - 253°С 13,8 спуаз ).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид na + h - построен подобно хлориду na + cl - . Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к vii группе периодической системы. При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: h 2 + 1 / 2 o 2 = h 2 o с выделением 285,937 · 10 3 дж/моль , т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм ). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% h 2 , а водородо-воздушной смеси - от 4 до 74% h 2 (смесь 2 объёмов h 2 и 1 объёма О 2 называется гремучим газом ). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

cuo +Н 2 = cu + h 2 o,

fe 3 o 4 + 4h 2 = 3fe + 4h 2 o, и т.д.

С галогенами В. образует галогеноводороды, например:

h 2 + cl 2 = 2hcl.

При этом с фтором В. взрывается (даже в темноте и при -252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3h 2 + n 2 = 2nh 3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: h 2 + s = h 2 s (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2h 2 + С (аморфный) = ch 4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: h 2 + 2li = 2lih. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например hcho, ch 3 oh и др. Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например:

c n h 2 n + h 2 = c n h 2 n +2.

Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот. В. склонен образовывать с некоторыми элементами так называемую водородную связь , оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение . Основные виды сырья для промышленного получения В. - газы природные горючие , коксовый газ (см. Коксохимия ) и газы нефтепереработки , а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): ch 4 + h 2 o = co + 3h 2 , и неполное окисление углеводородов кислородом: ch 4 + 1 / 2 o 2 = co + 2h 2 . Образующаяся окись углерода также подвергается конверсии: co + h 2 o = co 2 + h 2 . В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% h 2 и 40% co; в паровоздушном газе, кроме h 2 и co, имеется значительное количество n 2 , который используется вместе с получаемым В. для синтеза nh 3 . Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор koh или naoh (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

Применение . В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака . Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза hcl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. - дейтерий и тритий.

Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619-24.

Заряд ядра атома водорода равен 1 и поэтому в Периодической системе он стоит под номером 1. Водород расположен в первом периоде, где находятся всего два химических элемента H и He. Емкость первого электронного слоя равна 2 и поэтому у атомов гелия имеется завершенная электронная оболочка, а He является аналогом инертных газов (Ne, Ar, Kr, Xe и Rn). У атома водорода один электрон и его электронная конфигурация 1s1. В реакциях окисления или восстановления атом водорода может либо присоединять, либо отдавать один электрон. Какие же (по группам Периодической системы) одновалентные аналоги могут быть у водорода? В первую очередь - это щелочные металлы, у атомов которых на внешнем электронном слое также имеется 1 s электрон. Кроме того, металлические свойства химических элементов уменьшаются при переходе в Периодической системе по группам снизу вверх, а значит увеличиваются неметаллические свойства. И, если мы отнесем водород к первой группе, у него могут появиться слабые неметаллические свойства? Да его считают самым слабым неметаллом. Так что помещение водорода в первую группу не противоречит логике Периодической системы.

У атома водорода для завершения электронной оболочки не хватает всего одного электрона, поэтому при взаимодействии с активными металлами (щелочными и щелочноземельными) атом водорода стремится их внешний валентный электрон присоединить себе и тем самым он ведет себя подобно атомам галогенов. А получаемые водородные соединения (гидриды металлов - MeH) подобны соединениям галогенов со щелочными и щелочноземельными металлам. Значит они являются солями? По внешнему виду, по физическим свойствам, по способности проводить электрический ток в расплавленном состоянии гидриды металлов напоминают хлориды соответствующих металлов. При переходе в группе неметаллические свойства химических элементов снизу вверх возрастают. Тогда водород должен бы быть самым активным неметаллом. Это не так. Самый активный неметалл это фтор. Поскольку свойства водорода в чем-то напоминает свойства галогенов, то условно (в скобках) его можно было бы поместить в 7-ую группу над фтором.

Есть учебники, в которых клетку в первом периоде, предназначенную для водорода - делают размером в семь клеток - от Li до F - и считают водород аналогом сразу всех семи элементов 2-го периода. С этим вряд ли можно согласиться, так как водород во всех своих соединениях является одновалентным, а для элементов 2 - 6 групп валентность равная 1 не характерна.

Мы специально излагаем этот материал не в категоричной, как обычно написаны учебники для школьников, а в дискуссионной форме. Химия как наука все еще находится в стадии становления и развития. И не нужно бояться "противоречий" в разных учебных пособиях по химии. Нужно попробовать понять точку зрения автора, понять его доводы и стремиться формировать собственное обоснованное мнение.

знать

  • положение водорода в таблице Менделеева, нахождение в природе и практическое применение;
  • строение атома, валентность, степени окисления водорода;
  • способы получения и свойства простого вещества;
  • основные типы соединений водорода;

уметь

  • составить уравнения реакций получения водорода и реакций, характеризующих химические свойства водорода;
  • проводить расчеты по уравнениям реакций, в которых участвует водород;

владеть

Навыками прогнозирования протекания реакций с участием водорода и его соединений.

Положение водорода в периодической системе элементов. Водород в природе

Водород Н - первый элемент в таблице Менделеева, состоящий из простейших атомов, имеющих заряд ядра +1 и всего один электрон. В гл. 5 и 6 уже рассматривалось строение атома водорода и молекул Н 2 . Водород не только имеет разнообразное практическое применение, но и сыграл важную роль в развитии химии и физики.

Водород был впервые получен в виде газообразного простого вещества в первой половине XVI в. Парацельсом. В 1776 г. Г. Кавендиш исследовал его и указал отличия от других газов. А. Лавуазье первый получил водород из воды и доказал, что вода есть химическое соединение водорода с кислородом (1783).

Существуют разные мнения о том, в какую группу таблицы Менделеева следует поместить водород. Первый период составляют лишь два химических элемента - водород и гелий. Положение гелия как химически инертного элемента в группе VIIIA не вызывает сомнений. Тогда остаются семь пустых клеток в группах с I по VII. В какую из этих групп поместить водород? По строению атома он может быть отнесен к группе IA, так как имеет лишь один электрон на внешнем уровне. Но одновременно у него недостает лишь одного электрона до завершенной оболочки с п = 1. Наличием одной вакансии во внешней оболочке характеризуются элементы группы VIIА. Следовательно, водород можно поместить и в эту группу. Кроме того, у водорода, как и у элемента углерода в группе IVА, имеется ровно половина от максимального числа электронов на соответствующем уровне. Водород проявляет также сходство с кислородом и азотом, так как образует двухатомные молекулы (Н 2 , N 2 , 0 2). Поэтому целесообразно не вести дискуссии о самом правильном положении водорода в таблице Менделеева, а отдать водороду всю полосу в первом периоде от I до VII группы, не деля ее на клетки.

Водород представляет собой самый распространенный элемент во Вселенной. На его долю приходится около 90% всех атомов. Это объясняется тем, что на этапе протекания ядерных реакций в горячей плазме после возникновения Вселенной большая часть протонов не подверглась превращениям. При достаточном остывании плазмы в ходе дальнейшего расширения протоны соединились с электронами, образовав атомы водорода. Первичные ядерные реакции привели к образованию значительного количества гелия, и он оказался вторым по распространенности элементом (9%). Все остальные элементы, образовавшиеся в процессе синтеза ядер в звездах, вместе составляют приблизительно 1%.

Вещество планеты Земля содержит значительно меньшую долю легких элементов. Водорода по числу атомов около 16%, а по массе 1%. Большая часть имеющегося водорода находится в составе воды, в подземных месторождениях углеводородов, в биомассе растений и животных, а также в различных органических остатках.

Водород представляет собой биогенный элемент , или элемент жизни, т.е., находясь в составе организмов всех растений и животных, водород необходим для их жизнедеятельности. По числу атомов водород в живых организмах стоит на первом месте среди всех химических элементов. В организме человека атомы водорода составляют более 62% от суммарного числа атомов. В биоорганических соединениях водород связан как с атомами углерода, гак и с кислородом, азотом и серой функциональных групп. Следует учитывать, что живые организмы состоят не только из органических веществ, но содержат также более 60% воды, без которой биологические процессы невозможны. В сухом веществе живых организмов доля атомов водорода достигает 70%. Водород играет активную роль в процессах жизнедеятельности, переходя в виде протона от одних молекул к другим и образуя водородные связи. Окисление органических соединений с переходом атомов водорода в состав воды является одним из источников необходимой для жизнедеятельности энергии. Например, окисление (дегидрирование) органического вещества с гидроксогруппой по схеме

дает более 250 кДж энергии на моль окисляемых групп (на схеме R - различные углеродсодержащие радикалы или водород).

У водорода три изотопа. В природе наиболее распространен легкий изотоп Н, называемый протием. Ядро протия представляет собой элементарную частицу протон. На долю протия приходится 99,985% от числа атомов. Второй изотоп называют тяжелым водородом или дейтерием. Для его обозначения используется особый символ D. Ядро дейтерия состоит из протона и нейтрона. Во всех водородсодержащих веществах имеется примесь дейтерия - около 0,015% общего числа атомов водорода. Третий изотоп водорода - радиоактивный тритий j Н (символ Т), имеющий период полураспада 12,33 лет. Тритий в ничтожно малом количестве имеется в природе, так как образуется в результате воздействия нейтронов космических лучей на атомы азота. Большое количество трития образуется в ядерных реакторах. Как тритий, так и дейтерий широко применяются в ядерной технике.

Относительное различие по массе между атомами протия и дейтерия составляет 100%. Этим обусловлено заметное отличие свойств веществ, содержащих иротий, от тех же веществ, содержащих дейтерий. Для примера сравним некоторые свойства обычного водорода Н 2 и тяжелого водорода D 2 (табл. 17.1). Наиболее сильно различаются плотности обоих веществ, так как при близости радиусов электронных орбиталей, определяющих межатомные расстояния, ядра дейтерия вдвое тяжелее, чем ядра протия. Двукратное увеличение массы атомов дейтерия но сравнению с нро- тием приводит также к существенному повышению температур плавления и кипения простых веществ.

Таблица 17.1

Свойства простых веществ водорода и дейтерия

3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д.И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.

Водород можно записать в первую группу, т.к. его атом имеет на внешней оболочке 1 электрон, как и щелочные металлы, но также ему не хватает до завершения внешнего электронного слоя одного электрона, как и галогенам, поэтому его можно записать в седьмую группу. Водород при обычных условиях образует как и галогены двухатомную молекулу простого вещества с одинарной связью - газа, как фтор или хлор. Водород, как и галогены, соединяется с металлами, образуя нелетучие гидриды. Однако как и щелочные металлы водород может проявлять валентность только равную I, а галогены, как правило, образуют множество соединений, проявляя различную валентность.