Пусть дискретная физическая величина Х может принимать в результате опыта значения . Отношение числа опытов , в результате которых величина принимает значение , к общему числу проведенных опытов n называется частотой появления события . Частота является случайной величиной и меняется в зависимости от количества проведенных опытов. Однако при большом количестве опытов (в пределе n → ∞) она стабилизируется около некоторого значения , называемого вероятностью события (статистическое определение):

Очевидно, что сумма вероятностей реализации всех возможных значений случайной величины равна единице:

Дискретную случайную величину можно полностью задать вероятностным рядом, указав вероятность для каждого значения :

Законом распределения случайной величины называют любое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Вероятностный ряд является одним из видов законов распределения случайной величины. Распределение непрерывной случайной величины нельзя задать вероятностным рядом, поскольку число значений, которое она может принимать, так велико, что для большинства из них вероятность принять эти значения равна нулю. Поэтому для непрерывных физических величин изучается вероятность того, что в результате опыта значение случайной величины попадет в некоторый интервал. Удобно пользоваться вероятностью события , где - произвольное действительное число. Эта вероятность

является функцией от и называется функцией распределения (предельной функцией распределения, функцией распределения генеральной совокупности) случайной величины. В виде функции распределения можно задать распределение как непрерывной, так и дискретной случайной величины (рис. 2 и 3). F(x) является неубывающей функцией, т.е. если х1 ≤ х2, то F(х1) ≤ F(х2) (рис. 3).

Рис. 2. Функция распределения Рис. 3. Функция распределения

дискретной случайной величины. непрерывной случайной величины.

Ордината кривой , соответствующая точке , представляет собой вероятность того, что случайная величина при испытании окажется . Тогда вероятность того, что значения случайной величины будут лежать в интервале от , до , равна

Значения при предельных значениях аргумента равны , . Следует отметить, что функция распределения дискретной случайной величины всегда есть разрывная функция. Скачки происходят в точках, соответствующих возможным значениям этой величины, и равны вероятностям этих значений (рис. 2).

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

P (х X х + Δх ) = F (х + Δх ) – F (х ),

т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

f (x ) = F ′(x ). (4.8)

Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

Отметим свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция , т.е.

Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

Рис. 4.4 Рис. 4.5

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 4.5. Функция f (x ) задана в виде:

Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

, откуда А = .

б) Функцию распределения находим, используя свойство 3 :

Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

Если х > 2, то f (x ) = 0 и, следовательно

в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

  • Полная группа событий. Противоположные события. Соот­ношение между вероятностями противоположных событий (с вы­водом).
  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

    Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью
    на определенном участке оси абсцисс. Плотность вероятности
    , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует толькодля непрерывных случайных величин . Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности
    называетсякривой распределения .

    Свойства плотности вероятности непрерывной случайной величины.



    как производная монотонно неубывающей функции F(х). ☻



    Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности
    (т.к.
    , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл
    . ☻

    Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

      Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

    .

    Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

    Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

    где 0<р

    Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

    Ряд распределения биномиального закона имеет вид:

    Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
    выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

    Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

    а ее дисперсия

    Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
    ,

    Ряд распределения закона Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
    выполнено, ибо сумма ряда.

    На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

    Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

    и

    "

    Свойства плотности распределения

    Для начала напомним, что такое плотность распределения:

    Рассмотрим свойства плотности распределения:

    Свойство 1: Функция $\varphi (x)$ плотности распределения неотрицательна:

    Доказательство.

    Мы знаем, что функция распределения $F(x)$ - неубывающая функция. Из определения следует, что $\varphi \left(x\right)=F"(x)$, а производная неубывающей функции -- есть функция неотрицательная.

    Геометрически это свойство означает, то график функции $\varphi \left(x\right)$ плотности распределения находится либо выше, либо на самой оси $Ox$ (рис. 1)

    Рисунок 1. Иллюстрация неравенства $\varphi (x)\ge 0$.

    Свойство 2: Несобственный интеграл от функции плотности распределения пределах от $-\infty $ до $+\infty $ равен 1:

    Доказательство.

    Вспомним формулу для нахождения вероятности того, что случайная величина попадет интервал $(\alpha ,\beta)$:

    Рисунок 2.

    Найдем вероятность того, что случайная величина попадет в интервал $(-\infty ,+\infty $):

    Рисунок 3.

    Очевидно, что случайная величина всегда попадет в интервал $(-\infty ,+\infty $), следовательно, вероятность такого попадания равна единице. Получаем:

    Геометрически, второе свойство означает, что площадь криволинейной трапеции, ограниченной графиком функции плотности распределения $\varphi (x)$ и осью абсцисс численно равна единице.

    Можно также сформулировать обратное свойство:

    Свойство 3: Любая неотрицательная функция $f(x)\ge 0$, удовлетворяющая равенству $\int\limits^{+\infty }_{-\infty }{f\left(x\right)dx}=1$ является функцией плотность распределения некоторой непрерывной случайной величины.

    Вероятностный смысл плотности распределения

    Придадим переменной $x$ приращение $\triangle x$.

    Вероятностный смысл плотности распределения: Вероятность того, что непрерывная случайная величина $X$ примет значения из интервала$(x,x+\triangle x)$, приближенно равна произведению плотности распределения вероятности в точке $x$ на приращение $\triangle x$:

    Рисунок 4. Геометрическая иллюстрация вероятностного смысла плотности распределения непрерывной случайной величины.

    Примеры решения задач с использованием свойств плотности распределения

    Пример 1

    Функция плотности распределения вероятности имеет вид:

    Рисунок 5.

    1. Найти коэффициент $\alpha $.
    2. Построить график плотности распределения.
    1. Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\varphi \left(x\right)dx}$, получаем:

    Рисунок 6.

    Используя свойство 2, получим:

    \[-2\alpha =1,\] \[\alpha =-\frac{1}{2}.\]

    То есть, функция плотности распределения имеет вид:

    Рисунок 7.

    1. Построим её график:

    Рисунок 8.

    Пример 2

    Функция плотности распределения имеет вид $\varphi \left(x\right)=\frac{\alpha }{chx}$

    (Напомним, что $chx$ -- гиперболический косинус).

    Найти значение коэффициента $\alpha $.

    Решение. Используем второе свойство:

    \[\int\limits^{+\infty }_{-\infty }{\frac{\alpha }{chx}dx}=1,\] \[\alpha \int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}=1,\] \[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \int\limits^0_a{\frac{dx}{chx}}\ }+{\mathop{lim}_{b\to +\infty } \int\limits^b_0{\frac{dx}{chx}}\ }\]

    Так как $chx=\frac{e^x+e^{-x}}{2}$, то

    \[\int{\frac{dx}{chx}}=2\int{\frac{dx}{e^x+e^{-x}}}=2\int{\frac{de^x}{{1+e}^{2x}}}=2arctge^x+C\]

    \[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \left(-2arctge^a\right)\ }+{\mathop{lim}_{b\to +\infty } \left(2arctge^b\right)\ }=\pi \]

    Следовательно:

    \[\pi \alpha =1,\] \[\alpha =\frac{1}{\pi }\]