Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

§ 4. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

В теории вероятности и во многих ее приложениях большое значение имеют различные числовые характеристики случайных величин. Основными из них являются математическое ожидание и дисперсия.

1. Математическое ожидание случайной величины и его свойства.

Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом:

m 1 х 1 ,
m 2 - число подшипников с внешним диаметром х 2 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m n - число подшипников с внешним диаметром х n ,

Здесь m 1 +m 2 +...+m n =N . Найдем среднее арифметическое значение x ср внешнего диаметра подшипника. Очевидно,
Внешний диаметр вынутого наудачу подшипника можно рассматривать как случайную величину , принимающую значения х 1 , х 2 , ..., х n , c соответствующими вероятностями p 1 =m 1 /N , p 2 =m 2 /N , ..., p n =m n /N , так как вероятность p i появления подшипника с внешним диаметром x i равна m i /N . Таким образом, среднее арифметическое значение x ср внешнего диаметра подшипника можно определить с помощью соотношения
Пусть - дискретная случайная величина с заданным законом распределения вероятностей

Значения х 1 х 2 . . . х n
Вероятности p 1 p 2 . . . p n

Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е. *
При этом предпологается, что несобственный интеграл, стоящий в правой части равенства (40) существует.

Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.

1°. Математическое ожидание постоянной С равно этой постоянной .
Доказательство. Постоянную C можно рассматривать как случайную величину , которая может принимать только одно значение C c вероятностью равной единице. Поэтому

2°. Постоянный множитель можно выносить за знак математического ожидания , т.е.
Доказательство. Используя соотношение (39), имеем

3°. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин :

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины .

К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание приближенно равно среднему значению случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Если случайная величина характеризуется конечным рядом распределения:

Х х 1 х 2 х 3 х п
Р р 1 р 2 р 3 р п

то математическое ожидание М(Х) определяется по формуле:

Математическое ожидание непрерывной случайной величины определяется равенством:

где – плотность вероятности случайной величины Х .

Пример 4.7. Найти математическое ожидание числа очков, выпадающих при бросании игральной кости.

Решение:

Случайная величина Х принимает значения 1, 2, 3, 4, 5, 6. Составим закон ее распределения:

Х
Р

Тогда математическое ожидание равно:

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

М (С) = С.

2. Постоянный множитель можно выносить за знак математического ожидания:

М (СХ) = СМ (X).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Пример 4.8 . Независимые случайные величины X и Y заданы следующими законами распределения:

Х Y
Р 0,6 0,1 0,3 Р 0,8 0,2

Найти математическое ожидание случайной величины XY.

Решение .

Найдем математические ожидания каждой из данных величин:

Случайные величины X и Y независимые, поэтому искомое математическое ожидание:

M(XY) = M(X)M(Y)=

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

М (X + Y) = М (X) + М (Y).

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пример 4.9. Производится 3 выстрела с вероятностями попадания в цель, равными р 1 = 0,4; p 2 = 0,3 и р 3 = 0,6. Найти математическое ожидание общего числа попаданий.

Решение.

Число попаданий при первом выстреле есть случайная величина Х 1 , которая может принимать только два значения: 1 (попадание) с вероятностью р 1 = 0,4 и 0 (промах) с вероятностью q 1 = 1 – 0,4 = 0,6.

Математическое ожидание числа попаданий при первом выстреле равно вероятности попадания:

Аналогично найдем математические ожидания числа попаданий при втором и третьем выстрелах:

М(Х 2) = 0,3 и М(Х 3)= 0,6.

Общее число попаданий есть также случайная величина, состоящая из суммы попаданий в каждом из трех выстрелов:

Х = Х 1 + Х 2 + Х 3 .

Искомое математическое ожидание Х находим по теореме о математическом, ожидании суммы.

Понятие математического ожидания можно рассмотреть на примере с бросанием игрального кубика. При каждом броске фиксируются выпавшие очки. Для их выражения используются натуральные значения в диапазоне 1 – 6.

После определенного количества бросков при помощи не сложных расчетов можно найти среднее арифметическое значение выпавших очков.

Также, как и выпадение любого из значений диапазона, эта величина будет случайной.

А если увеличить количество бросков в несколько раз? При больших количествах бросков среднее арифметическое значение очков будет приближаться к конкретному числу, получившему в теории вероятностей название математического ожидания.

Итак, под математическим ожиданием понимается среднее значение случайной величины. Данный показатель может представляться и в качестве взвешенной суммы значений вероятной величины.

Это понятие имеет несколько синонимов:

  • среднее значение;
  • средняя величина;
  • показатель центральной тенденции;
  • первый момент.

Иными словами, оно является ничем иным как числом вокруг которого распределяются значения случайной величины.

В различных сферах человеческой деятельности подходы к пониманию математического ожидания будут несколько отличаться.

Оно может рассматриваться как:

  • средняя выгода, полученная от принятия какого-то решения, в том случае, когда такое решение рассматривается с точки зрения теории больших чисел;
  • возможная сумма выигрыша либо проигрыша (теория азартных игр), рассчитанная в среднем для каждой из ставок. На сленге они звучат как «преимущество игрока» (позитивно для игрока) либо «преимущество казино» (негативно для игрока);
  • процент прибыли, полученной от выигрыша.

Матожидание не является обязательным для абсолютно всех случайных величин. Оно отсутствует для тех у которых наблюдается расхождение соответствующей суммы или интеграла.

Свойства математического ожидания

Как и любому статистическому параметру, математическому ожиданию присущи свойства:


Основные формулы для математического ожидания

Вычисление математического ожидания может выполняться как для случайных величин, характеризующихся как непрерывностью (формула А), так и дискретностью (формула Б):

  1. M(X)=∑i=1nxi⋅pi, где xi – значения случайной величины, pi – вероятности:
  2. M(X)=∫+∞−∞f(x)⋅xdx, где f(x) – заданная плотность вероятностей.

Примеры вычисления математического ожидания

Пример А.

Можно ли узнать средний рост гномов в сказке о Белоснежке. Известно, что каждый из 7 гномов имел определенный рост: 1,25; 0,98; 1,05; 0,71; 0,56; 0,95 и 0,81 м.

Алгоритм вычислений достаточно прост:

  • находим сумму всех значений показателя роста (случайная величина):
    1,25+0,98+1,05+0,71+0,56+0,95+ 0,81 = 6,31;
  • полученную сумму делим на количество гномов:
    6,31:7=0,90.

Таким образом, средний рост гномов в сказке равен 90 см. Иными словами таково математическое ожидание роста гномов.

Рабочая формула — М(х)=4 0,2+6 0,3+10 0,5=6

Практическая реализация математического ожидания

К вычислению статистического показателя математического ожидания прибегают в различных сферах практической деятельности. В первую очередь речь идет о коммерческой сфере. Ведь введение Гюйгенсом этого показателя связано с определением шансов, которые могут быть благоприятными, либо напротив неблагоприятными, для какого-то события.

Этот параметр широко применяется для оценки рисков, особенно если речь идет о финансовых вложениях.
Так, в предпринимательстве расчет математического ожидания выступает в качестве метода для оценивания риска при расчете цен.

Также данный показатель может использоваться при расчете эффективности проведения тех или иных мероприятий, например, по охране труда. Благодаря ему можно вычислить вероятность наступления события.

Еще одна сфера применения данного параметра – менеджмент. Также он может рассчитываться при контроле качества продукции. Например, при помощи мат. ожидания можно рассчитать возможное количество изготовления бракованных деталей.

Незаменимым мат.ожидание оказывается и при проведении статистической обработки полученных в ходе научных исследований результатов. Он позволяет рассчитать и вероятность проявления желательного либо нежелательного исхода эксперимента или исследования в зависимости от уровня достижения поставленной цели. Ведь ее достижение может ассоциироваться с выигрышем и выгодой, а ее не достижение – в качестве проигрыша либо убытка.

Использование математического ожидания на Форекс

Практическое применение данного статистического параметра возможно при проведении операций на валютном рынке. С его помощью можно осуществлять анализ успешности торговых сделок. При чем увеличение значения ожидания свидетельствует об увеличении их успешности.

Также важно помнить, что математическое ожидание не должно рассматриваться в качестве единственного статистического параметра используемого для анализа работы трейдера. Использование нескольких статистических параметров наряду со средним значением повышает точность проводимого анализа в разы.

Данный параметр хорошо зарекомендовал себя при мониторинговых наблюдениях за торговыми счетами. Благодаря ему выполняется быстрая оценка работ, осуществляемых на депозитном счете. В тех случаях, когда деятельность трейдера удачна и он избегает убытков, пользоваться исключительно расчетом математического ожидания не рекомендуется. В этих случаях не учитываются риски, что снижает эффективность анализа.

Проведенные исследования тактик трейдеров свидетельствуют о том, что:

  • наиболее эффективными оказываются тактики, базирующиеся на случайном входе;
  • наименее эффективны – тактики, базирующиеся на структурированных входах.

В достижении позитивных результатов не менее важны:

  • тактика управления капиталом;
  • стратегии выходов.

Используя такой показатель как математическое ожидание можно предположить каким будет прибыль либо убыток при вложении 1 доллара. Известно, что этот показатель, рассчитанный для всех игр, практикуемых в казино, в пользу заведения. Именно это позволяет зарабатывать деньги. В случае длинной серии игр вероятность потери денег клиентом существенно возрастает.

Игры профессиональных игроков ограничены небольшими временными промежутками, что увеличивает вероятность выигрыша и снижает риск проигрыша. Такая же закономерность наблюдается и при выполнении инвестиционных операций.

Инвестор может заработать значительную сумму при положительном ожидании и совершении большого количества сделок за небольшой временной промежуток.

Ожидание может рассматриваться как разница между произведением процента прибыли (PW) на среднюю прибыль (AW) и вероятность убытка (PL) на средний убыток (AL).

В качестве примера можно рассмотреть следующий: позиция – 12,5 тыс. долларов, портфель — 100 тыс. долларов, риск на депозит – 1%. Прибыльность сделок составляет 40% случаев при средней прибыли 20%. В случае убытка средние потери составляют 5%. Расчет математического ожидания для сделки дает значение в 625 долларов.

В предыдущем мы привели ряд формул, позволяющих находить числовые характеристики функций, когда известны законы распределения аргументов. Однако во многих случаях для нахождения числовых характеристик функций не требуется знать даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики; при этом мы вообще обходимся без каких бы то ни было законов распределения. Определение числовых характеристик функций по заданным числовым характеристикам аргументов широко применяется в теории вероятностей и позволяет значительно упрощать решение ряда задач. По преимуществу такие упрощенные методы относятся к линейным функциям; однако некоторые элементарные нелинейные функции также допускают подобный подход.

В настоящем мы изложим ряд теорем о числовых характеристиках функций, представляющих в своей совокупности весьма простой аппарат вычисления этих характеристик, применимый в широком круге условий.

1. Математическое ожидание неслучайной величины

Сформулированное свойство является достаточно очевидным; доказать его можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

.

2. Дисперсия неслучайной величины

Если - неслучайная величина, то

3. Вынесение неслучайной величины за знак математического ожидания

, (10.2.1)

т. е. неслучайную величину можно выносить за знак математического ожидания.

Доказательство.

а) Для прерывных величин

б) Для непрерывных величин

.

4. Вынесение неслучайной величины за знак дисперсии и среднего квадратического отклонения

Если - неслучайная величина, а - случайная, то

, (10.2.2)

т. е. неслучайную величину можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство. По определению дисперсии

Следствие

,

т. е. неслучайную величину можно выносить за знак среднего квадратического отклонения ее абсолютным значением. Доказательство получим, извлекая корень квадратный из формулы (10.2.2) и учитывая, что с.к.о. - существенно положительная величина.

5. Математическое ожидание суммы случайных величин

Докажем, что для любых двух случайных величин и

т. е. математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Это свойство известно под названием теоремы сложения математических ожиданий.

Доказательство.

а) Пусть - система прерывных случайных величин. Применим к сумме случайных величин общую формулу (10.1.6) для математического ожидания функции двух аргументов:

.

Ho представляет собой не что иное, как полную вероятность того, что величина примет значение :

;

следовательно,

.

Аналогично докажем, что

,

и теорема доказана.

б) Пусть - система непрерывных случайных величин. По формуле (10.1.7)

. (10.2.4)

Преобразуем первый из интегралов (10.2.4):

;

аналогично

,

и теорема доказана.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин - как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых:

, (10.2.5)

т. е. математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Для доказательства достаточно применить метод полной индукции.

6. Математическое ожидание линейной функции

Рассмотрим линейную функцию нескольких случайных аргументов :

где - неслучайные коэффициенты. Докажем, что

, (10.2.6)

т. е. математическое ожидание линейной функции равно той же линейной функции от математических ожиданий аргументов.

Доказательство. Пользуясь теоремой сложения м. о. и правилом вынесения неслучайной величины за знак м. о., получим:

.

7. Дисп ep сия суммы случайных величин

Дисперсия суммы двух случайных величин равна сумме их дисперсий плюс удвоенный корреляционный момент:

Доказательство. Обозначим

По теореме сложения математических ожиданий

Перейдем от случайных величин к соответствующим центрированным величинам . Вычитая почленно из равенства (10.2.8) равенство (10.2.9), имеем:

По определению дисперсии

что и требовалось доказать.

Формула (10.2.7) для дисперсии суммы может быть обобщена на любое число слагаемых:

, (10.2.10)

где - корреляционный момент величин , знак под суммой обозначает, что суммирование распространяется на все возможные попарные сочетания случайных величин .

Доказательство аналогично предыдущему и вытекает из формулы для квадрата многочлена.

Формула (10.2.10) может быть записана еще в другом виде:

, (10.2.11)

где двойная сумма распространяется на все элементы корреляционной матрицы системы величин , содержащей как корреляционные моменты, так и дисперсии.

Если все случайные величины , входящие в систему, некоррелированы (т. е. при ), формула (10.2.10) принимает вид:

, (10.2.12)

т. е. дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых.

Это положение известно под названием теоремы сложения дисперсий.

8. Дисперсия линейной функции

Рассмотрим линейную функцию нескольких случайных величин.

где - неслучайные величины.

Докажем, что дисперсия этой линейной функции выражается формулой

, (10.2.13)

где - корреляционный момент величин , .

Доказательство. Введем обозначение:

. (10.2.14)

Применяя к правой части выражения (10.2.14) формулу (10.2.10) для дисперсии суммы и учитывая, что , получим:

где - корреляционный момент величин :

.

Вычислим этот момент. Имеем:

;

аналогично

Подставляя это выражение в (10.2.15), приходим к формуле (10.2.13).

В частном случае, когда все величины некоррелированны, формула (10.2.13) принимает вид:

, (10.2.16)

т. е. дисперсия линейной функции некоррелированных случайных величин равна сумме произведений квадратов коэффициентов на дисперсии соответствующих аргументов.

9. Математическое ожидание произведения случайных величин

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент и математическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Это положение легко доказывается методом полной индукции.

10. Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,

,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

11. Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

Доказательство.

откуда по теореме умножения математических ожиданий

Но первый центральный момент для любой величины равен нулю; два средних члена обращаются в нуль, и формула (10.2.24) доказана.

Соотношение (10.2.24) методом индукции легко обобщается на произвольное число независимых слагаемых:

. (10.2.25)

2) Четвертый центральный момент суммы двух независимых случайных величин выражается формулой

где - дисперсии величин и .

Доказательство совершенно аналогично предыдущему.

Методом полной индукции легко доказать обобщение формулы (10.2.26) на произвольное число независимых слагаемых.