Движение тела, брошенного под углом к горизонту

Основные формулы криволинейного движения

1 . Скорость движения материальной точки

\(\vec V=\frac{d\vec r}{dt}\) ,

где \(\vec r\) - радиус-вектор точки.

2 . Ускорение материальной точки

\(\vec a=\frac{d\vec V}{dt}=\frac{d^2\vec r}{dt^2}\) ,

\(a=\sqrt{a^2_{\tau}+a^2_n}\) ,

где \(a_{\tau}\) - тангенциальное ускорение, \(a_n\) - нормальное ускорение.

3 . Тангенциальное ускорение

\(a_{\tau}=\frac{dV}{dt}=\frac{d^2s}{dt^2}\)

4 . Нормальное ускорение

\(a_n=\frac{V^2}{R}\) ,

где \(R\) - радиус кривизны траектории.

5 . для равнопеременного движения

\(S=V_0t+\frac{at^2}{2}\)

\(V=V_0+at\)

Выразив из второго равенства \(t\) и подставив в первое, получим полезную формулу

\(2aS=V^2-V_0^2\)

Примеры решения задач

В задачах о движении тела в поле силы тяжести будем полагать \(a=g=9.8\) м/с 2 .

Задача 1.

Снаряд вылетает из орудия с начальной скоростью 490 м/с под углом 30 0 к горизонту. Найти высоту, дальность и время полета снаряда, не учитывая его вращение и сопротивление воздуха.

Решение задачи

Найти: \(h, S, t\)

\(V_0=490\) м/с

\(\alpha=30^0\)

Свяжем ИСО с орудием.

Составляющие скорости по осям Ox и Oy в начальный момент времени равны:

\(V_{0x}=V_0\cos\alpha\) - остается неизменной во все время полета снаряда,

\(V_{0y}=V_0\sin\alpha\) - меняется согласно уравнению равнопеременного движения

\(V_y=V_0\sin\alpha-gt\) .

В наивысшей точке подъема \(V_y=V_0\sin\alpha-gt_1=0\) , откуда

\(t_1=\frac{V_0\sin\alpha}{g}\)

Полное время полета снаряда

\(t=2t_1=\frac{2V_0\sin\alpha}{g}=50\) c.

Высоту подъема снаряда определим из формулы пути равно замедленного движения

\(h=V_{0y}t_1-\frac{gt_1^2}{2}=\frac{V_0^2\sin^2\alpha}{2g}=3060\) м.

Дальность полета определим как

\(S=V_{0x}t=\frac{V_0^2\sin{2\alpha}}{g}=21000\) м.

Задача 2 .

Из точки А свободно падает тело. Одновременно из точки В под углом \(\alpha\) к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе. Показать, что угол \(\alpha\) не зависит от начальной скорости \(V_0\) тела, брошенного из точки В, и определить этот угол, если \(\frac{H}{S}=\sqrt3\) . Сопротивлением воздуха пренебречь.

Решение задачи.

Найти: \(\alpha\)

Дано: \(\frac{H}{S}=\sqrt3\)

Свяжем ИСО с точкой В.

Оба тела могут встретиться на линии ОА (см. рис.) в точке С. Разложим скорость \(V_0\) тела, брошенного из точки В, на горизонтальную и вертикальную составляющие:

\(V_{0x}=V_0\cos\alpha\) ; \(V_{0y}=V_0\sin\alpha\) .

Пусть от начала движения до момента встречи пройдет время

\(t=\frac{S}{V_{0x}}=\frac{S}{V_0\cos\alpha}\) .

За это время тело из точки А опуститься на величину

\(H-h=\frac{gt^2}{2}\) ,

а тело из точки В поднимется на высоту

\(h=V_{0y}t-\frac{gt^2}{2}=V_0\sin\alpha{t}-\frac{gt^2}{2}\) .

Решая последние два уравнения совместно, находим

\(H=V_0\sin\alpha{t}\) .

Подставляя сюда ранее найденное время, получим

\(\tan\alpha=\frac{H}{S}=\sqrt3\) ,

т.е. угол бросания не зависит от начальной скорости.

\(\alpha=60^0\)

Задача 3.

С башни брошено тело в горизонтальном направлении со скоростью 40 м/с. Какова скорость тела через 3 с после начала движения? Какой угол образует с плоскостью горизонта вектор скорости тела в этот момент?

Решение задачи.

Найти: \(\alpha\)

Дано: \(V_0=40\) м/с. \(t=3\) c.

Свяжем ИСО с башней.

Тело одновременно участвует в двух движениях: равномерно в горизонтальном направлении со скоростью \(V_0\) и в свободном падении со скоростью \(V_y=gt\) . Тогда полная скорость тела есть

\(V=\sqrt{V_0^2+g^2t^2}=50 м/с.\)

Направление вектора скорости определяется углом \(\alpha\) . Из рисунка видим, что

\(\cos\alpha=\frac{V_0}{V}=\frac{V_0}{\sqrt{V_0^2+g^2t^2}}=0.8\)

\(\alpha=37^0\)

Задача 4.

Два тела брошены вертикально вверх из одной точки одно вслед за другим с интервалом времени, равным \(\Delta{t}\) , с одинаковыми скоростями \(V_0\) . Через какое время \(t\) после бросания первого тела они встретятся?

Решение задачи.

Найти: \(t\)

Дано: \(V_0\) , \(\Delta{t}\)

Из анализа условия задачи, ясно, что первое тело поднимется на максимальную высоту и на спуске встретится со вторым телом. Запишем законы движения тел:

\(h_1=V_0t-\frac{gt^2}{2}\)

\(h_2=V_0(t-\Delta{t})-\frac{g(t-\Delta{t})^2}{2}\) .

В момент встречи \(h_1=h_2\) , откуда сразу получаем

\(t=\frac{V_0}{g}+\frac{\Delta{t}}{2}\)

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).

Пусть тело брошено под углом α к горизонту со скоростью . Как и в предыдущих случаях, будем пренебрегать сопро­тивлением воздуха. Для описания движения необходимо выбрать две оси координат - Ох и Оу (рис. 29).

Рис.29

Начало отсчета совместим с начальным положением тела. Проекции начальной скорости на оси Оу и Ох: , . Проекции ускорения: ,

Тогда движение тела будет описываться уравнениями:

(8)

(9)

Из этих формул следует, что в горизонтальном направлении тело движется равномерно, а в вертикальном - равноускоренно.

Траекторией движения тела будет парабола. Учитывая, что в верхней точке параболы , можно найти время подъема тела до верхней точки параболы:


Подставив значение t 1 в уравнение (8), найдем максимальную высоту подъема тела:

Максимальная высота подъема тела.

Время полета тела находим из условия, что при t=t 2 координата у 2 =0. Следовательно, . Отсюда, - время полета тела. Сравнивая эту формулу с формулой (10), видим, что t 2 =2t 1 .

Время движения тела с максимальной высоты t 3 =t 2 -t 1 =2t 1 -t 1 =t 1 . Следовательно, сколько времени тело поднимается на максимальную высоту, столько времени оно опускается с этой высоты. Подставляя в уравнение координаты х (6) значение времени t 2 , найдем:


- дальность полета тела.

Мгновенная скорость в любой точке траектории направлена по касательной к траектории (см. рис. 29), модуль скорости определяется по формуле

Таким образом, движение тела, брошенного под углом к горизонту или в горизонтальном направлении, можно рассматривать как результат двух независимых движений - горизонтального равномерного и вертикального равноускоренного (свободного падения без начальной скорости или движения тела, брошенного вертикально вверх).

Рассмотрим, что может быть целью кинематических задач.

1. Нас может интересовать изменение кинематических величин в процессе движения , т.е. получение сведений об изменении координат, скорости, ускорения, а также соответствующих угловых величин.

2. В ряде задач, например, в задаче о движении тела под углом к горизонту, требуется узнать о значениях физических величин в конкретных состояниях : дальности полета, наибольшей величине подъема и т.д.

3. В случаях, когда тело одновременно участвует в нескольких движениях (например, качение шара) или рассматривается относительное движение нескольких тел, возникает необходимость установить соотношения между перемещениями, скоростями и ускорениями (линейными и угловыми), т.е. найти уравнения кинематической связи .

Несмотря на большое разнообразие задач по кинематике, можно предложить следующий алгоритм их решения:

1. Сделать схематический рисунок, изобразив начальное положение тел и их начальное состояние, т.е. и .

2. Выбрать систему отсчета на основании анализа условия задачи. Для этого нужно выбрать тело отсчета и связать с ним систему координат, указав начало отсчета координат, направление осей координат, момент начала отсчета времени. При выборе положительных направлений руководствуются направлением движения (скорости) или направлением ускорения.

3. Составить на основании законов движения систему уравнений в векторном виде для всех тел, а затем в скалярной форме, спроецировав на координатные оси эти векторные уравнения движения. При записи этих уравнений следует обратить внимание на знаки "+" и "-" проекций входящих в них векторных величин.

4. Ответ необходимо получить в виде аналитической формулы (в общем виде), а в конце произвести числовые расчеты.

Пример 4. Сколько времени пассажир, сидящий у окна поезда, который идет со скоростью 54 км/ч, будет видеть проходящий мимо него встречный поезд, скорость которого 36 км/ч, а длина 250 м?

Решение. Неподвижную систему отсчета свяжем с Землей, подвижную – с поездом, в котором находится пассажир. Согласно закону сложения скоростей , где - скорость встречного поезда относительно первого. В проекциях на ось Ох:

Так как путь, пройденный встречным поездом относительно первого, равен длине поезда, то время

Пример 5. Пароход идет от Нижнего Новгорода до Астрахани 5,0 суток, а обратно - 7,0 суток. Как долго будет плыть плот от Нижнего Новгорода до Астрахани? Стоянки и задержки в движении исключить.

Дано: t 1 =5 сут, t 2 =7 сут.

Решение. Неподвижную систему отсчета свяжем с берегом, подвижную – с водой. Будем считать, что скорость воды на всем пути одинакова и скорость парохода относительно воды постоянна и равна модулю мгновенной скорости парохода относительно воды.

Так как плот движется относительно берега со скоростью течения реки , то время его движения , где s – расстояние между городами. При движении парохода по течению его скорость согласно закону сложения скоростей , или в проекциях на ось Ох:

где - скорость парохода относительно берега, - скорость парохода относительно реки.

Зная время движения, можно найти скорость:

Из формул (1) и (2) имеем:

При движении парохода против течения , или в проекциях на ось Ох , где - скорость парохода относительно берега.

С другой стороны, . Тогда

Решая систему уравнений (3) и (4) относительно , получим:

Найдем время движения плота:

Пример 6. При равноускоренном движении тело проходит за два первых равных последовательных промежутка времени по 4,0 с каждый пути s 1 = 24 м и s 2 =64 м соответственно. Определите начальную скорость и ускорение тела.

Дано: t 1 =t 2 = 4,0 с, s 1 =24 м, s 2 = 64 м.

Решение. Запишем уравнения пути для s 1 и (s 1 +s 2) соответственно. Так как начальная скорость в этом случае одинакова, то

Так как t1=t2, то

Выразив из (1) и подставив ее в (2), получим:

Тогда начальная скорость

Пример 7. Автомобиль, двигаясь по прямолинейной траектории равноускоренно с начальной скоростью 5,0 м/с, прошел за первую секунду путь, равный 6,0 м. Найдите ускорение автомобиля, мгновенную скорость в конце второй секунды и перемещение за 2,0 с.

Решение. Зная путь, пройденный телом за первую секунду, можно найти ускорение:

Скорость в конце второй секунды найдем по формуле


Пример 8. х ) имеет вид x = A + Bt + Ct 3 , где А=4 м, В=2м/с, С=-0,5 м/с 3 .

Для момента времени t 1 =2 c определить: 1) координату точки х 1 точки; 2) мгновенную скорость v 1 ; 3) мгновенное ускорение а 1 .

Дано: x = A + Bt + Ct 3 , А=4 м, В=2 м/с, С=-0,5 м/с 3 , t 1 =2 c.

Найти: х 1 ; v 1 ; а 1 .

Решение. 1.Подставим в уравнение движения вместо t заданное значение времени t 1: x 1 = A + Bt 1 + Ct 1 3 . Подставим в это выражение значения А, В, С, t 1 и произведем вычисления: х 1 = 4 м.

2. Мгновенная скорость: Тогда в момент времени t 1 мгновенная скорость v 1 = B + 3Ct 1 2 . Подставим сюда значения В,С, t 1: v 1 = – 4 м/с. Знак минус указывает на то, что в момент времени t 1 =2 c точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение: Мгновенное ускорение в момент времени t 1 равно а 1 = 6Сt 1 . Подставим значения С, t 1: а 1 = –6 м/с 2 . Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 9. Кинематическое уравнение движения материальной точки по прямой (ось х ) имеет вид х = A + Bt + Ct 2 , где А=5 м, В=4м/с, С= -1м/с 2 . Определить среднюю скорость v хср за интервал времени от t 1 =1 c до t 2 =6 c.

Дано: х = A + Bt + Ct 2 , А=5м, В=4м/с, С=- 1м/с 2 , t 1 =1 c , t 2 =6 c.

Найти: v хср -? а хср -?

Решение. Средняя скорость за интервал времени t 2 -t 1 определяется выражением v ср =(х 2 -х 1)/(t 2 - t 1).

х 1 = A + Bt 1 + Ct 1 2 = 8 м, х 2 = A + Bt 2 + Ct 2 2 = –7 м.

Подставим значения х 1 , х 2 , t 1 , t 2 и произведем вычисления: v хср = -3 м/с.

Пример 10. Из вертолета, находящегося на высоте h = 300 м, сбросили груз. Через какое время груз достигнет земли, если: а) вертолет неподвижен; б) вертолет опускается со скоростью v 0 =5 м/с; 3) вертолет поднимается со скоростью v 0 =5 м/с. Описать графически соответствующие движения груза в осях s(t), v(t) и a(t).

Решение. а) Груз, покинувший неподвижный вертолет, свободно падает, т.е. движется равноускоренно с ускорением свободного падения g. Время движения найдем из соотношения Откуда Графики движение объекта отмечены 1 на рисунке.

б) Движение груза, покинувшего вертолет, который опускается с постоянной скоростью v 0 =5 м/с, является равноускоренным движением с постоянным ускорением g и описывается уравнением

Подстановка численных значений дает уравнение 9,8t 2 +10t-600=0.

Отрицательный результат не имеет физического смысла, поэтому время движения t=7,57 с.

Графики движение объекта отмечены 2 на рисунке.

3) Движение груза, покинувшего вертолет, который поднимается с постоянной скоростью v 0 =5 м/с, cостоит из двух этапов. На первом этапе – груз движется равнозамедленно с постоянным ускорениемg, направленным противоположно скорости, и описывается уравнениями

В верхней точке траектории скорость становится равной нулю, поэтому

Подставляя второе уравнение системы в первое, получим

На втором этапе – свободное падение с высоты h 0 =h+h 1 =300+1,28=301,28 м.

Поскольку

Графики движение объекта отмечены 3 на рисунке.

Пример 11. С воздушного шара, опускающегося вниз с постоянной скоростью 2 м/с, бросили вертикально вверх груз со скоростью 18 м/c относительно земли. Определить расстояние между шаром и грузом в момент, когда груз достигает высшей точки своего подъема. Через какое время груз пролетит мимо шара, падая вниз.

Дано: v 01 = 2 м/с, v 02 =18 м/c

Найти: s-? τ -?

Решение. Направим ось 0Y вертикально вверх, начало совместим с точкой 0, в которой находился шар в момент бросания груза.

Тогда уравнения движения груза и воздушного шара:

Скорость движения груза изменяется по закону v 2 =v 02 – gt.

В наивысшей точке В подъема груза v 2 =0. Тогда время подъема до этой точки Координата груза в точке В

За это время воздушный шар опустился до точки А; его координата

Расстояние между точками А и В:

Через промежуток времени τ, когда камень пролетит мимо шара, координаты тел будут одинаковы: у 1С =у 2С;

Пример 12. С какой скоростью и по какому курсу должен лететь самолет, чтобы за два часа пролететь на север 300 км, если во время полета дует северо-западный ветер под углом 30 о к меридиану со скоростью 27 км/ч?

Дано: t=7,2∙10 3 c; l =3∙10 5 м; α=30° ≈ 0,52 рад; v 2 ≈7,2 м/с.

Найти: v 2 -? φ -?

Решение. Рассмотрим движение самолета в системе отсчета, связанной с землей.

Проведем ось ОХ в направлении на восток, а ось OY - на север. Тогда скорость движения самолета в выбранной системе отсчета

где v=l /t (2)

Уравнение (1) в проекции на оси

ОХ: 0=v 1 ∙sinα – v 2 ∙sinφ;

OY: v= v 2 ∙cosφ - v 1 ∙cosα, или v 1 ∙sinα = v 2 ∙sinφ, v 2 ∙cosφ=v 1 ∙cosα + v (3)

Разделив эти уравнения почленно, получим tgφ=v 1 sinα/(v 1 cosα+ v),

или с учетом (2)

tgφ=v 1 ∙sinα/(v 1 ∙cosα+ l /t);

φ=arctgv 1 ∙sinα/(v 1 ∙cosα+ l /t) ≈0,078 рад.

Возводя в квадрат правые и левые части уравнений (3) и складывая полученные уравнения, находим

v 2 2 ∙sin 2 φ + v 2 2 ∙cos 2 φ = v 1 2 sin 2 α+ (v 1 ∙cosα + v) 2 ,

откуда , или с учетом (2)

Пример 13. Тело, брошенное вертикально вверх, вернулось на землю через t=3 с. Найти высоту подъема тела и его начальную скорость.

Решение. Движение тела вверх является равнозамедленным с ускорением - g и происходит в течение времени t 1 , а движение вниз – равноускоренным с ускорением g и происходит в течение времениt 2 . Уравнения, описывающие движение на участках АВ и ВА, образуют систему:

Поскольку v B =0, то v 0 =gt 1 . Подставив v 0 в первое уравнение системы, получим . Если сравнить это выражение с третьим уравнением системы, то можно сделать вывод о том, что время подъема равно времени спуска t 1 =t 2 =t/2=1,5с. Начальная скорость и скорость при приземлении равны друг другу и составляют v 0 =v A =gt 1 =9,8∙1,5=14,7 м/с.

Высота подъема тела

Пример 14. Свободно падающее тело в последнюю секунду движения прошло половину пути. Найти высоту, с которой оно брошено и время движения.

Решение. Зависимость пройденного пути от времени для свободно падающего тела . Поскольку участок ВС, составляющие половину всего пути, пройден за время, равное 1 с, то первая половина пути АВ пройдена за время (t-1) с. Тогда движение на участке ВС может быть описано как .

Решая систему

получим t 2 -4t+2=0. Корни этого уравнения t 1 =3,41 с и t 2 =0,59 с. Второй корень не подходит, т.к. время движения, исходя из условия задачи, должно превышать одну секунду. Следовательно, тело падало в течение 3,41 с и прошло за это время путь

Пример 15. С башни высотой 25 м горизонтально брошен камень со скоростью 15 м/с.

Найти: 1) сколько времени камень будет в движении, 2) на каком расстояниион упадет на землю, 3) с какой скоростью он упадет на землю, 4) какой угол составит траектория камня с горизонтом в точке его падения на землю. Сопротивление воздуха не учитывать.

Дано: Н=25 м, v o =15 м/с

Найти: t-? s x - ? v - ? φ- ?

Решение. Перемещение брошенного горизонтально камня можно разложить на два: горизонтальное s x и вертикальное s y :

где t - время движения.

2) s x =v o t= 33,9 м;

3) v y =gt=22,1м/с;

4) sinφ= v y /v=0,827;

Пример 16. С башни высотой 25 м горизонтально со скоростью v x =10 м/c брошено тело.

Найти: 1) время t падения тела, 2) на каком расстоянии l от основания башни оно упадет, 3) скорость v в конце падения, 4) угол, который составит траектория тела с землей в точке его приземления.

Решение. Движение тела является сложным. Оно участвует в равномерном движении по горизонтали и равноускоренном с ускорением g по вертикали. Поэтому участок АВ описывается уравнениями:

Для точки А эти уравнения принимают вид:

Тогда l =10∙2,26=22,6 м, а v y =9,8∙2,26=22,15 м/с.

Поскольку , то

Угол, который траектория составляет с землей, равен углу φ в треугольнике скоростей в т. А, тангенс которого , поэтому φ=68,7°.

Пример 17. Для тела, брошенного с горизонтальной скоростью v x =10 м/с, через время t=2 с после начала движения найти: нормальное, тангенциальное и полное ускорения, а также радиус кривизны траектории в этой точке.

Решение. Вертикальная составляющая скорости v y =gt=9,8∙2=19,6 м/с

Скорость в точке А:

Векторы образуют треугольник скоростей, а векторы - треугольник ускорений. Как видно из рисунка, эти треугольники подобны, а это означает, что их стороны пропорциональны: .

Нормальное ускорение , поэтому радиус кривизны траектории

Пример 18. Мяч бросили со скоростью 10 м/с под углом 40 о к горизонту.

Найти: 1) на какую высоту поднимется мяч; 2) на каком расстоянии от места бросания мяч упадет на землю, 3) сколько времени он будет в движении.

Дано: v o =10 м/с, α=40 о.

Найти: s y - ? s x - ? t - ?

Решение. 1) Найдем наибольшую высоту s y max , на которую поднимается тело, брошенное со скоростью v o подуглом α к горизонту. Имеем (см. рис.):

v y =v o sinα – gt; (1)

s y =v o t∙sinα – gt 2 /2. (2)

В верхней точке v y = 0 и из (1) получим v o ∙sin𝛼 = gt 1 , отсюда время подъема мяча t 1 =v o ∙sinα/g. Подставляя t 1 в (2), получим

s y max = v o 2 ∙sin 2 α/(2g)= 2,1 м.

2) Найдем дальность полета s x max тела, брошенного под углом к горизонту.

Имеем: v x =v o ∙cosα, (3)

s x =v x t=v o t∙cosα. (4)

Тело упадет на горизонтальную плоскость через время t 2 =2t 1 =2v o sinα/g.

Подставляя t 2 в (4), получим s xmax = v о 2 sin2α/g= 10,0 м.

3) t 2 =2t 1 =2v o sinα/g=1,3 с.

Пример 19. Тело брошено со скоростью v 0 =10 м/с 2 под углом α=30° к горизонту. На какую высоту тело поднимется. На каком расстоянии от места бросания оно упадет на землю? Какое время он будет в движении?


Решение. Горизонтальная и вертикальная составляющие начальной скорости

Движение на участке ОА можно разложить на два простых движения: равномерное по горизонтали и равнозамедленное по вертикали:

В точке А

Тогда и

Если тело участвует одновременно в нескольких движениях, то в каждом из них оно участвует независимо от другого, следовательно, время движения на участке АВ определяется временем движения вниз – t 2 . Время движения вверх равно времени движения вниз, а, значит,

При равномерном движении по горизонтали за равные промежутки времени тело проходит равные участки пути, следовательно,

Дальность полета

Высота подъема тела

Пример 20. Точка движется прямолинейно на плоскости по закону x=4(t-2) 2 . Каковы начальная скорость v 0 и ускорение точки a ? Найти мгновенную скорость точки v t =5 в начале пятой секунды движения.

Решение.

1) Т.к. v=x’, то v 0 =(4∙(t-2) 2)’=(4∙(t 2 -4t+4))’=(4t 2 -16t+16)’=8t-16

при t=0 v 0 =-16 м/с.

2) Т.к. a= , то a=(8t-16)’=8 м/с.

3) При t=4, т.к. до начала 5 с прошло 4 с.

v t =5 =8t-16=8∙4-16=32 м/с.

Ответ: Начальная скорость точки v 0 =-16 м/с, ускорение a=8 м/с, скорость точки в начале пятой секунды движения v t =5 =32 м/с.

Пример 21. Движение материальной точки описывается уравнениями: а) s=αt 3 ; б) s=αt 2 +βt. Сравните среднюю скорость и среднеарифметическую начальной и конечной скоростей v ср в интервале времени 0 - t. Здесь α и β - положительные постоянные.

Решение. Вспомним определения средней и мгновенной скорости:

Выражения для мгновенной скорости получаются путем дифференцирования уравнения движения.

Выражения для средней скорости находятся как отношение изменения криволинейной координаты к времени:

Получим выражения для среднеарифметической скорости:

Ответим на вопрос условия задачи. Видно, что в случае “а” средняя и среднеарифметическая скорости не совпадают, а в случае “б” - совпадают.

Пример 22. Материальная точка движется равномерно по криволинейной траектории. В какой точке траектории ускорение максимально?

Решение. При движении по криволинейной траектории ускорение складывается из тангенциального и нормального. Тангенциальное ускорение характеризует быстроту изменения величины (модуля) скорости. Если величина скорости не изменяется, тангенциальное ускорение равно нулю. Нормальное ускорение зависит от радиуса кривизны траектории a n =v 2 /R. Ускорение максимально в точке с наименьшим радиусом кривизны, т.е. в точке С.

Пример 23. Материальная точка движется согласно закону:

1) Определить начальную координату, начальную скорость и ускорение путем сравнения с законом движения с постоянным ускорением. Записать уравнение для проекции скорости.

Решение. Закон движения с постоянным ускорением имеет вид

Сравнивая это уравнение с уравнением условия задачи, получаем

x 0 = - 1 м,

v 0 x = 1 м/с,

a x = - 0,25 м/с 2 .

Возникает вопрос: какой смысл имеет знак “минус”? Когда проекция вектора отрицательна? Только в том случае, когда вектор направлен против оси координат.

Изобразим на рисунке начальную координату, векторы скорости и ускорения.

Запишем уравнение для скорости в виде

и подставим в него полученные данные (начальные условия)

2) Найти зависимость скорости и ускорения от времени, применяя определения этих величин.

Решение. Применим определения для мгновенных значений скорости и ускорения:

Производя дифференцирование, получим v x =1-0,25t, a x = - 0,25 м/с 2 .

Видно, что ускорение не зависит от времени.

3) Построить графики v х (t) и a х (t). Охарактеризовать движение на каждом участке графика.

Решение. Зависимость скорости от времени - линейная, график представляет собой прямую линию.

При t = 0 v х = 1 м/с. При t = 4 с v х = 0.

Из графика видно, что на участке “а” проекция скорости положительная, а ее величина убывает, т.е. точка движется замедленно в направлении оси х. На участке “b” проекция скорости отрицательная, а ее модуль возрастает. Точка движется ускоренно в направлении, противоположном оси х. Следовательно, в точке пересечения графика с осью абсцисс происходит поворот, изменение направления движения.

4) Определить координату точки поворота и путь до поворота.

Решение. Еще раз отметим, что в точке поворота скорость равна нулю. Для этого состояния из уравнений движения получаем:

Из второго уравнения получаем t пов = 4 с. (Видно, чтобы получить это значение не обязательно строить и анализировать график). Подставим это значение в первое уравнение: x пов =-1+4-4 2 /8 = 1 м. Изобразим, как двигалась точка.

Путь до поворота, как видно из рисунка, равен изменению координаты: s пов =x пов -x 0 =1-(-1)=2 м.

5) В какой момент времени точка проходит через начало координат?

Решение. В уравнении движения следует положить х = 0. Получаем квадратное уравнение 0=-1+t-t 2 /8 или t 2 -8t+8=0. У этого уравнения два корня: . t 1 = 1,17 с, t 2 = 6,83 с. Действительно, точка проходит через начало координат два раза: при движении “туда” и “обратно”.

6) Найти путь, пройденный точкой за 5 секунд после начала движения, и перемещение за это время, а также среднюю путевую скорость на этом участке пути.

Решение. Прежде всего найдем координату, в которой оказалась точка после 5 секунд движения и отметим ее на рисунке.

x(5)=-1+5-5 2 /8= 0,875 м.

Поскольку в данном состоянии точка находится после поворота, то пройденный путь уже не равняется изменению координаты (перемещению), а складывается из двух слагаемых: пути до поворота

s 1 = x пов - x 0 = 1 - (-1) = 2 м

и после поворота

s 2 = x пов - x(5) = 1 - 0,875 = 0,125 м,

s = s 1 + s 2 = 2,125 м.

Перемещение точки равно

s х = x(5) - x 0 = 0,875 - (-1) = 1,875 м

Средняя путевая скорость вычисляется по формуле

В рассмотренной задаче описан один из наиболее простых видов движения - движение с постоянным ускорением. Тем не менее, данный подход к анализу характера движения является универсальным.

Пример 24. При одномерном движении с постоянным ускорением зависимости координаты и скорости частицы от времени описываются соотношениями:

Установить связь между координатой частицы и ее скоростью.

Решение. Из этих уравнений исключаем время t. Для этого используем метод подстановки. Из второго уравнения выражаем время и подставляем в первое уравнение:

Если движение начинается из начала координат (х 0 =0) из состояния покоя (v 0 x =0), то полученная зависимость принимает вид

хорошо знакомый из школьного курса физики.

Пример 25. Движение материальной точки описывается уравнением: , где i и j - орты осей х и у, α и β - положительные постоянные. В начальный момент времени частица находилась в точке х 0 =у 0 =0. Найти уравнение траектории частицы у(х).

Решение. Условие задачи сформулировано с применением векторного способа описания движения. Перейдем к координатному способу. Коэффициенты при единичных векторах представляют собой проекции вектора скорости, а именно:

Вначале получим зависимости x(t) и y(t), решая задачу первого класса.

Пример 28. С башни высотой h бросили камень со скоростью v 0 под углом α к горизонту. Найти:

1) какое время камень будет в движении;

2) на каком расстоянии s он упадет на землю;

3) с какой скоростью он упадет на землю;

4) какой угол β составит траектория камня с горизонтом в точке его падения;

5) нормальное и тангенциальное ускорения камня в этой точке, а также радиус кривизны траектории;

6) наибольшую высоту подъема камня.

Сопротивлением воздуха пренебречь.

Решение. На примере этой задачи покажем, как в обобщенном виде можно установить приведенный алгоритм решения любой задачи данного класса.

1. В задаче рассматривается движение материальной точки (камня) в поле силы тяжести Земли. Следовательно, это движение с постоянным ускорением свободного падения g, направленным вертикально вниз.

Если начальная скорость брошенного тела направлена вверх под некоторым углом к горизонту, то в начальный момент тело имеет составляющие начальной скорости как в горизонтальном, так и в вертикальном направлениях (рис. 178).

Рис. 178. Траектория тела, брошенного под углом к горизонту (в отсутствие сопротивления воздуха)

Задача отличается от рассмотренной в предыдущем параграфе тем, что начальная скорость не равна нулю и для движения по вертикали. Для горизонтальной же составляющей все сказанное остается в силе.

Введем координатные оси: ось , направленную по вертикали вверх, и горизонтальную ось , расположенную в одной вертикальной плоскости с начальной скоростью . Проекция начальной скорости на ось равна , а на ось равна (при показанном на рис. 178 направление осей и обе проекции положительны). Ускорение тела равно и, следовательно, все время направлено по вертикали вниз. Поэтому проекция ускорения на ось равна - , а на ось - нулю.

Поскольку составляющая ускорения в направлении оси отсутствует, проекция скорости на ось остается постоянной и равной своему начальному значению . Следовательно, движение проекции тела на ось будет равномерным. Движение проекции тела на ось происходит в обоих направлениях - вверх и вниз - с одинаковым ускорением . Поэтому на прохождение пути вверх от произвольной высоты до высоты подъема к затрачивается такое же время , как и на прохождение пути вниз от высоты до . Отсюда следует, что симметричные относительно вершины точки (например, точки и ) лежат на одинаковой высоте. А это означает, что траектория симметрична относительно точки . Но характер траектории тела после точки мы уже выяснили в § 112. Это - парабола, которую описывает тело, летящее с горизонтальной начальной скоростью. Следовательно, все то, что мы говорили относительно траектории тела в предыдущем параграфе, в равной мере относится и к рассматриваемому случаю, только вместо «половины параболы» тело описывает «полную параболу» , симметричную относительно точки .

Проверить полученный результат можно также при помощи струи воды, вытекающей из наклонно поставленной трубки (рис, 179). Если позади струи поместить экран с заранее начерченными параболами, то можно увидеть, что струи воды также представляют собой параболы.

Рис. 179. Струя имеет форму параболы, тем более вытянутой, чем больше начальная скорость струи

Высота подъема и расстояние, которое пройдет брошенное тело в горизонтальном направлении до возвращения на ту высоту, с которой тело начало свое движение, т. е. расстояние на рис. 178, зависят от модуля и направления начальной скорости . Прежде всего, при данном направлении начальной скорости и высота и горизонтальное расстояние тем больше, чем больше модуль начальной скорости (рис. 179).

Для одинаковых по модулю начальных скоростей расстояние, которое проходит тело в горизонтальном направлении до возвращения на первоначальную высоту, зависит от направления начальной скорости (рис. 180). При увеличении угла между скоростью и горизонтом это расстояние сначала увеличивается, при угле в достигает наибольшего значения, а затем снова начинает уменьшаться.

Проведем расчет движения тела, брошенного вверх под углом к горизонту с начальной скоростью (рис. 178). Напомним, что проекция скорости тела на ось постоянна и равна . Поэтому координата тела в момент времени равна

. (113.1)

Рис. 180. При увеличении наклона струи, вытекающей с данной скоростью, расстояние, на которое она бьет, сначала увеличивается, достигает наибольшего значения при наклоне в , а затем уменьшается

Движение проекции тела на ось будет сначала равнозамедленным. После того как тело достигнет вершины траектории , проекция скорости станет отрицательной, т. е. одного знака с проекцией ускорения, вследствие чего начнется равноускоренное движение тела вниз. Проекция скорости на ось изменяется со временем по закону

. (113.2)

В вершине траектории скорость тела имеет только горизонтальную составляющую, а обращается в нуль. Чтобы найти момент времени , в который тело достигнет вершины траектории, подставим в формулу (113.2) вместо и приравняем получившееся выражение нулю:

; отсюда (113.3)

Определяемое формулой (113.3) значение дает время, за которое брошенное тело достигает вершины траектории. Если точка бросания и точка падения тела лежат на одном уровне, то все время полета будет равно :, при т. е. при бросании тела вертикально вверх.

113.1. Камень, брошенный с земли вверх под углом к горизонту, падает обратно на землю на расстоянии 14 м. Найти горизонтальную и вертикальную составляющие начальной скорости камня, если весь полет продолжался 2 с. Найти наибольшую высоту подъема камня над землей. Сопротивлением воздуха пренебречь.

113.2. Пожарный направляет струю воды на крышу дома высоты 15 м. Над крышей дома струя поднимается на 5 м. На каком расстоянии от пожарного (считая по горизонтали) струя упадет на крышу, если она вырывается из шланга со скоростью 25 м/с? Сопротивлением воздуха пренебречь.