Вода в Мировом океане находится в постоянном движении. Это обеспечивает перемешивание воды, перераспределение тепла, солености и газов.

Рассмотрим отдельные движения вод.

1. Волновые движения (волны). Главная причина возникновения волн – ветер, но они могут быть вызваны и резким изменением атмосферного давления, землетрясением, извержением вулканов на побережье и океаническом дне, приливообразующей силой.

Наиболее высокая часть волны называется гребнем; наиболее углубленная часть – подошвой. Расстояние между двумя соседними гребнями (подошвами) называют длиной волны – ().

Высотой волны (Н) называют превышение гребня волны над ее подошвой. Период волны () – это промежуток времени, в течение которого каждая точка волны перемещается на расстояние, равное ее длине. Скорость () – расстояние, пробегаемое в единицу времени какой-либо точкой волны.

Различают:

а) ветровые волны – под влиянием ветра волны растут одновременно в высоту и в длину, при этом увеличивается период () и скорость (); по мере развития волн меняется их внешний вид и размеры. На стадии затухания волн длинные пологие волны называют зыбью. Ветровые волны обладают значительной разрушающей силой, тем самым формируя рельеф побережья. Средняя высота воды ветровых волн в океане 3-4 м (максимум до 30 м), в морях высота волн меньше – максимально не больше 9 м. С возрастанием глубины волны быстро затухают.

б) цунами – сейсмические волны, охватывающие всю толщу воды, возникают при землетрясениях и подводных извержениях вулканов. Цунами имеют очень большую длину волны, их высота в океане не превышает 1 м, поэтому в океане они не заметны. Но на побережьях, в заливах их высота увеличивается до 20-50 м. Средняя скорость распространения цунами от 150 км/ч до 900 км/ч. Перед приходом цунами вода обычно отступает от берега на несколько сот метров (до 1 км) в течение 10-15 минут. Крупные цунами бывают редко. Большая часть их приходится на берега Тихого океана. С цунами связаны огромные разрушения. Сильнейшие цунами произошли в 1960 г. в результате землетрясения в Андах, на побережье Чили. При этом цунами распространились по Тихому океану до берегов Северной Америки (Калифорния), Новой Зеландии, Австралии, Филиппинских, Японских, Курильских, Гавайских островов и Камчатки. До берегов Японии и Камчатки цунами дошли почти через сутки от момента землетрясения.

в) приливные волны (приливы-отливы) возникают в результате воздействия Луны и Солнца. Приливы – чрезвычайно сложное явление. Они постоянно изменяются, поэтому их нельзя считать периодическими. Для судовождения созданы специальные таблицы «приливов», что особенно важно для портовых городов, находящихся в низовьях рек (Лондон на р.Темза и др.). Энергию приливных волн используют, строя ПЭС (они есть в России, Франции, США, Канаде, Китае).

2. Течения Мирового океана (морские течения). Это горизонтальные движения воды в океанах и морях, характеризующиеся определенным направлением и скоростью. Их длина составляет несколько тысяч километров, ширина – десятки, сотни километров, глубина – сотни метров.

Главная причина возникновения течений в океане – ветер. К другим причинам можно отнести приливообразующие силы, силу тяжести. Все течения испытывают влияние Кориолисовой силы.

Течения можно классифицировать по ряду признаков.

I . По происхождению различают течения

1) фрикционные – возникают под действием движущегося воздуха на поверхность воды:

а) ветровые – вызваны временными ветрами (сезонными),

б) дрейфовые – вызваны постоянными ветрами (господствующими);

2) гравитационные – возникают под действием тяжести:

а) сточные – текут из районов избытка воды и стремятся выровнять поверхность,

б) плотностные – являются результатом различий плотности воды на одной глубине;

3) приливно-отливные – возникают под действием приливообразующих сил; охватывают всю толщу воды.

II . По продолжительности различают течения

1)постоянные – имеют всегда приблизительно одно и то же направление и скорость (Северное пассатное, Южное пассатное и др.);

2) периодические – периодически меняют направление и скорость (муссонные течения в Индийском океане, приливно-отливные течения и другие);

3) временные (эпизодические) – в их изменениях нет закономерностей; они часто меняются, чаще всего в результате действия ветра.

III . По температуре можно выделить (но относительно) течения

1) теплые – например, температура Северо-Атлантического течения +6 о С, а окружающей воды +4 о С;

2) холодные – например, температура Перуанского течения +22 о С, окружающей воды +28 о С;

3) нейтральные.

Теплые течения, как правило, идут от экватора к полюсам, холодные наоборот. Теплые течения обычно более соленые, чем холодные.

IV . В зависимости от глубины расположения выделяют течения

    поверхностные,

    глубинные,

    придонные.

В настоящее время установлена определенная система течений океана, обусловленная прежде всего общей циркуляцией атмосферы. Схема их такова. В каждом полушарии по обе стороны от экватора существуют большие круговороты течений вокруг постоянных субтропических барических максимумов (в этих широтах образуются области повышенного атмосферного давления): в северном полушарии по часовой стрелке, в южном против часовой стрелки. Между ними возникает экваториальное противотечение с запада на восток. В умеренных и субполярных широтах северного полушария наблюдаются малые кольца течений вокруг барического минимума (области пониженного атмосферного давления: Исландский минимум и Алеутский минимум). В аналогичных широтах южного полушария существует течение с запада на восток вокруг Антарктиды (течение Западных ветров).

Наиболее устойчивыми течениями являются Северное и Южное пассатные (экваториальные) течения. У восточных берегов материков в тропических широтах теплые сточные течения: Гольфстрим, Куросиво, Бразильское, Мозамбикское, Мадагаскарское, Восточно-Австралийское.

В умеренных широтах под действием постоянных западных ветров существуют теплые Северо-Атлантическое и Северо-Тихоокеанское течения и холодное течение Западных ветров (Западный Дрейф). У западных берегов материков в тропических широтах наблюдаются холодные компенсационные течения: Калифорнийское, Канарское, Перуанское, Бенгельское, Западно-Австралийское.

В малых кольцах течений следует назвать теплое Норвежское и холодное Лабрадорское течения в Атлантике и Аляскское и Курило-Камчатское течения в Тихом океане.

В северной части Индийского океана муссоновая циркуляция порождает сезонные ветровые течения: зимой – с востока на запад, летом – наоборот (летом это холодное Сомалийское течение).

В Северном Ледовитом океане главное направление вод и льдов с востока на запад, в сторону Гренландского моря. Арктика пополняется водами из Атлантики в виде Нордкапского, Шпицбергенского, Новоземельского течений.

Велико значение морских течений для климата и природы Земли. Течения нарушают зональное распределение температуры. Так, холодное Лабрадорское течение способствует формированию льдо-тундровых ландшафтов на полуострове Лабрадор. А теплые течения Атлантики делают незамерзающей большую часть Баренцева моря. Течения оказывают влияние и на количество осадков: теплые способствуют впадению осадков, холодные - нет. Морские течения способствуют также перемешиванию воды и осуществляют перенос питательных веществ; с их помощью происходит миграция растений и животных.

Движение вод Мирового океана……………………………………………3

Западные пограничные течения - Гольфстрим и Куросио……….6

Экваториальные течения……………………………………………...8

Циркуляция полярных вод……………………………………………10

Волны и приливы……………………………………………………...11

Цунами…………………………………………………………………12

Приливы………………………………………………………………..12

Библиографический список....………………………………………………13

Движение вод Мирового океана

По своему физическому состоянию вода - очень подвижная среда, поэтому в природе она находится в непрерывном движении. Это движение вызывают различные причины, прежде всего ветер. Воздействуя на воды океана, он возбуждает поверхностные течения, которые переносят огромные массы воды их одного района океана в другой. Энергия поступательного движения поверхностных вод вследствие внутреннего трения передается в нижележащие слои, которые также вовлекаются в движение. Однако непосредственное влияние ветра распространяется на сравнительно небольшое (до 300 м) расстояние от поверхности. Ниже в толще воды и в придонных горизонтах перемещение происходит медленно и имеет направления, связанные с рельефом дна.

Поверхностные течения образуют два больших круговорота, разделенных противотечением в районе экватора. Водоворот северного полушария вращается по часовой стрелке, а южного - против. При сопоставлении этой схемы с течениями реального океана можно увидеть значительное сходство между ними для Атлантического и Тихого океанов. В то же время нельзя не заметить, что реальный океан имеет более сложную систему противотечений у границ континентов, где, например, располагаются Лабрадорское течение (Северная Атлантика) и Аляскинское возвратное течение (Тихий океан). Кроме того, течения у западных окраин океанов отличаются большими скоростями перемещения воды, чем у восточных. Ветры прилагают к поверхности океана пару сил, вращающих воду в северном полушарии по часовой стрелке, а в южном - против нее. Большие водовороты океанических течений возникают в результате действия этой пары вращающих сил. Важно подчеркнуть, что ветры и течения не относятся «один к одному». Например, наличие быстрого течения Гольфстрим у западных берегов Северной Атлантики не означает, что в этом районе дуют особенно сильные ветры. Баланс между вращающей парой сил среднего поля ветра и результирующими течениями складывается на площади всего океана. Кроме того, течения аккумулируют огромное количество энергии. Поэтому сдвиг в поле среднего ветра не приводит автоматически к сдвигу больших океанических водоворотов.

На водовороты, приводимые в движение ветром, накладывается другая циркуляция, термохалинная («халина» - соленость). Вместе температура и соленость определяют плотность воды. Океан переносит тепло из тропических широт в полярные. Этот перенос осуществляется при участии таких крупных течений, как Гольфстрим, но существует также и возвратный сток холодной воды в направлении тропиков. Он происходит в основном на глубинах, расположенных ниже слоя возбуждаемых ветром водоворотов. Ветровая и термохалинная циркуляции представляют собой составные части общей циркуляции океана и взаимодействуют друг с другом. Так, если термохалинные условия объясняют в основном конвективные движения воды (опускание холодной тяжелой воды в полярных районах и ее последующий сток к тропикам), то именно ветры вызывают расхождение (дивергенцию) поверхностных вод и фактически «выкачивают» холодную воду обратно к поверхности, завершая цикл.

Представления о термохалинной циркуляции менее полны, чем о ветровой, но некоторые особенности этого процесса более или менее известны. Считается, что образование морских льдов в море Уэдделла и в Норвежском море имеет важное значение для формирования холодной плотной воды, распространяющейся у дна в Южной и Северной Атлантике. В оба района поступает вода повышенной солености, которая охлаждается зимой до температуры замерзания. При замерзании воды значительная часть содержащихся в ней солей не включается в новообразующийся лед. В результате соленость и плотность остающейся незамерзшей воды увеличиваются. Эта тяжелая вода опускается ко дну. Обычно ее соответственно называют антарктической донной и североатлантической глубинной водой.

Другая важная особенность термохалинной циркуляции связана с плотностной стратификацией океана и ее влиянием на перемешивание. Плотность воды в океане с глубиной возрастает и линии постоянной плотности идут почти горизонтально. Воду с разными характеристиками значительно легче перемешать в направлении линий постоянной плотности, чем поперек них.

Термохалинную циркуляцию трудно с определенностью охарактеризовать. По сути, и горизонтальная адвекция (перенос воды морскими течениями), и диффузия должны играть важную роль в термохалинной циркуляции. Определение относительного значения этих двух процессов в каком-либо районе или ситуации представляет важную задачу.

Главные черты поверхностной циркуляции вод мирового океана определяются ветровыми течениями. Важно отметить, что движение водных масс в Атлантическом и Тихом океанах очень сходно. И в том и в другом океане существуют два огромных антициклонических круговых течения, разделенных экваториальным противотечением. В обоих океанах есть, кроме того, мощные западные (в северном полушарии) пограничные течения (Гольфстрим в Атлантическом и Куросио в Тихом) и такие же по характеру, но более слабые восточные течения (в южном полушарии) - Бразильское и Восточно-Австралийское. Вдоль их западных побережий прослеживаются холодные течения - Ойясио в Тихом океане, Лабрадорское и Гренландское течения в Северной Атлантике. Кроме того, в восточной части каждого бассейна к северу от основного круговорота обнаружен циклонический круговорот меньшего масштаба.

Некоторые различия между океанами связаны с различиями в очертаниях их бассейнов. Атлантический, Индийский и Тихий океаны имеют разную форму. Но некоторые из различий определяются особенностями поля ветра, как, например, в Индийском океане. Циркуляция в южной части Индийского океана в основных чертах сходна с циркуляцией в южных бассейнах Атлантического и Тихого океанов. Но в северной части Индийского океана она явно подчиняется муссонным ветрам, где в период летнего и зимнего муссонов картина циркуляции полностью меняется.

По ряду причин по мере приближения к берегу отклонения от общей картины циркуляции становятся все более существенными. В результате взаимодействия основных климатических характеристик течений с такими же характеристиками побережий часто возникают устойчивые или квазиустойчивые вихри. Заметные отклонения от средней картины циркуляции могут вызывать у побережий и местные ветры. В отдельных районах возмущающими факторами режима циркуляции служат речной сток и приливы.

В центральных районах океанов средние характеристики течений вычисляются по малому количеству точных данных и потому особенно ненадежны.

    Западные пограничные течения - Гольфстрим и Куросио

Известно, что западные пограничные течения в северном полушарии (Гольфстрим и Куросио) лучше развиты, чем их аналоги в южном полушарии.

Если Гольфстрим считать частью кругового антициклонического вихря, то вряд ли можно точно определить его начало и конец. Известно, что между Мексикой и Кубой через Юкатанский пролив устремляется сильное течение, которое обычно описывает петлю в Мексиканском заливе и только затем выходит в океан из Флоридского пролива. На протяжении около 1200 км, от Ки-Уэста во Флориде до мыса Хаттерас в Северной Каролине, Гольфстрим упорно следует вдоль побережья Америки, лишь иногда слегка отклоняясь от него. Однако, миновав Хаттерас, Гольфстрим как бы начинает рыскать. К югу от Большой Ньюфаундлендской банки он пересекает Северную Атлантику. На этом извилистом участке своего пути Гольфстрим образует огромные волнообразные меандры. Один из них был обнаружен у 45 град. з.д., примерно в 2500 км от мыса Хаттерас. Где-то на пути между юго-восточным краем Ньюфаундлендского поднятия и Срединно-Атлантическим хребтом Гольфстрим перестает прослеживаться как единое течение.

Ширина Гольфстрима на поверхности колеблется от 125 до 175 км. Левый, если смотреть по течению, край Гольфстрима легко обнаружить по горизонтальному градиенту температуры, который становится заметным, начиная с глубины в несколько десятков метров, и противотечению. Правый край обнаружить по температуре трудно, но там часто отмечается довольно заметное противотечение. Скорость Гольфстрима на поверхности может достигать 250 см/с, т.е. превышать 5 узлов.

Представляя себе в общем плане циркуляцию океанических вод в виде системы обширных антициклонических вихрей, необходимо отметить, что течения, в сумме образующие круговороты, весьма сильно отличаются в их разных участках. Западные пограничные течения, такие, как Гольфстрим и Куросио, - узкие, быстрые, глубокие потоки с довольно хорошо выраженными границами. Направленные к экватору течения на другой сторонне океанических бассейнов, такие, как Калифорнийское, Перуанское и Бенгальское, напротив, широкие, слабые и неглубокие потоки с расплывчатыми границами, некоторые исследователи даже считают, что эти границы есть смысл проводить на мористой стороне течений такого типа.

Калифорнийское течение считается наиболее изученным из них. Глубина этого потока ограничивается в основном верхним 500-метровым слоем. Оно складывается из ряда крупных вихрей, наложенных на слабый, но широкий поток воды, направленный к экватору. Скорости и направления движения воды, измеренные в зоне Калифорнийского течения, в любой данный момент могут оказаться совершенно отличными от средних значений. Такая же картина, видимо, характерна и для других восточных пограничных течений.

Прибрежный поток воды обычно отличается особой сложностью, и при описании его часто выделяют из более широкой системы вдольбереговых течений, присваивая ему другое название.

В зоне многих восточных пограничных течений главным фактором, определяющим распределение температуры, солености и химических характеристик воды на поверхности, является апвеллинг. Апвеллинг имеет важное биологическое значение, так как благодаря ему глубинные воды выносят питательные вещества в верхние слои воды и тем способствуют увеличению продуктивности фитопланктона. Зоны апвеллинга - это биологически самые продуктивные районы мира.

    Экваториальные течения

Течения тропической зоны тесно связаны с системой пассатных ветров. На большей части Атлантического и Тихого океанов в северном полушарии дуют северо-восточные пассаты, а в южном полушарии их роль выполняют юго-восточные пассаты. Эти две системы пассатных ветров разделяет область внутритропической конвергенции, характеризующаяся слабыми ветрами неустойчивых направлений. Ее часто называют экваториальной штилевой зоной. Поскольку она разделяет системы ветров двух полушарий, ее можно считать своего рода климатическим экватором. Обычно она располагается между 3 град. с.ш. и 10 град. с.ш.

Основные океанические течения тропической зоны как бы отражают собой особенности системы ветров этих мест. Так, Северное и Южное экваториальные течения западного направления, образующие часть основных антициклонических круговоротов течений северного и южного полушарий, «управляются» пассатами. Между этими двумя широкими потоками располагается сравнительно узкое (шириной 300 - 500 км) Экваториальное противотечение, направленное на восток. Вблизи побережий и поле пассатных ветров, и система экваториальных течений усложняются.

Океанические воды тропической зоны характеризуются хорошо перемешанным теплым поверхностным слоем, который отделяется мощным термоклином от холодной воды глубин. Термоклин служит также своего рода перегородкой между богатыми кислородом, но бедными фосфатами и нитратами поверхностными водами и глубинными водами с низким содержанием кислорода и относительно высоким содержанием питательных веществ. Экваториальные течения приурочены главным образом к области термоклина. Это экваториальное под поверхностное течение в Тихом океане обычно называют течением Кромвелла. Напоминая в обширности океана ленту толщиной порядка всего 200 м и шириной 300 км, оно перемещается со скоростью до 150 см в сек. Ядро течения обычно совпадает с термоклином и располагается на экваторе или вблизи него. Иногда оно поднимается к поверхности, но это случается редко.

    Циркуляция полярных вод

Циркуляция вод Мирового океана в полярных районах северного и южного полушарий совершенно различна. Арктический океан скрыт под покровом дрейфующих льдов. Существующие сведения о течениях в Северном Ледовитом океане указывают на наличие медленного переноса воды в направлении против часовой стрелки. Свободному перемешиванию глубинных холодных вод Арктики с глубинными водами Атлантического и Тихоно океанов препятствуют два довольно мелководных порога между континентами. Глубина мелководного порога в Беринговом проливе, разделяющем Чукотку и Аляску, не достигает и 100 м, но сильно препятствует водообмену между Атлантическим и Тихим океанами через Северный Ледовитый.

В южном полушарии все выглядит иначе. Широкий (300 миль) и глубокий (3000 м) пролив Дрейка - между Южной Америкой и Антарктидой - обеспечивает беспрепятственный водообмен между Атлантическим и Тихим океанами. Благодаря этому направленное на восток Антарктическое циркумполярное течение простирается до дна и при расчетной величине расхода воды оказывается величайшим течением Мирового океана.

Антарктическое циркумполярное течение приводится в действие господствующими здесь западными ветрами, а его средняя скорость и расход воды определяются балансом между касательной силы ветра на поверхности и силой трения о дно. Установлено, что над понижениями дна течение отклоняется к югу, а над поднятиями - к северу, что указывает на несомненное влияние рельефа дна на направление этого течения.

Наиболее хорошо выраженные адвективные потоки воды в глубоководной области океанов отмечаются вдоль западных границ бассейнов.

    Волны и приливы

Волны регулярны и имеют некоторые общие характеристики - длину, амплитуду и период. Также отмечается скорость распространения волн.

Длина волны представляет собой расстояние между вершинами или подошвами волн, высота волны - вертикальное расстояние от подошвы до вершины, оно равно удвоенной амплитуде, период равен времени между моментами прохождения двух последовательных вершин (или подошв) через одну и ту же точку.

Высота ряби измеряется приблизительно сантиметром, а период составляет около одной секунды и меньше. Волны прибоя достигают нескольких метров в высоту при периодах от 4 до 12 с.

Океанические волны имеют разные очертания и формы.

Волны, вызванные местным ветром, называют ветровыми. Другой тип волн - волны зыби, которые медленно качают судно и при безветренной погоде. Зыбь образуют волны, которые сохраняются после того, как они выйдут их области действия ветра.

При любой скорости ветра достигается некое равновесное состояние, выражающееся в явлении полностью развитого волнения, когда энергия, передаваемая ветром волнам, равняется энергии, передаваемая ветром волнам, равняется энергии, теряемой при разрушении волн. Но для того, чтобы образовалось полностью развитое волнение, ветер должен дуть продолжительное время и на большом пространстве. Пространство, подвергающееся воздействию ветра, называется область разгона.

    Цунами

Цунами распространяются волнами от эпицентра подводных землетрясений. Район воздействия волн цунами огромен.

Цунами связаны непосредственно с движениями земной коры. Мелкофокусное землетрясение, которое вызывает значительные смещения коры на дне океанов, вызовет и цунами. Но столь же сильное землетрясение, не сопровождающееся сколько-нибудь заметными подвижками коры, цунами не вызовет.

Цунами возникает в виде одиночного импульса, передний фронт которого распространяется со скоростью мелководной волны. Исходный импульс далеко не всегда обеспечивает концентрическое распространение энергии, а с ней и волны.

    Приливы

Приливы - медленные подъемы и спады уровня воды и перемещения ее кромки. Приливообразующие силы - результат притяжения Солнца и Луны. Когда Солнце и Луна находятся примерно на одной линии с Землей, то есть в периоды полнолуния и новолуния, приливы оказываются наибольшими. Т.к. плоскости обращения Солнца и Луны не параллельны, действие сил Луны и Солнца меняется по сезонам, а также в зависимости от фазы Луны. Приливообразующая сила Луны примерно вдвое больше приливообразующей силы Солнца. Большие различия в амплитуде приливов на разных участках побережья определяются главным образом формой океанических бассейнов.

Библиографический список

Большая серия знаний. Планета Земля/Сост. А.М. Берлянт. - М.: ООО «ТД «Издательство Мир книги», 2006. Издательский дом «Современная педагогика», 2006. – 128с.:ил.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРКЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ШУЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра географии и методики обучения

ДВИЖЕНИЕ ВОД МИРОВОГО ОКЕАНА

Работу выполнил: Ермаков Дмитрий Юрьевич, студента 2курса 1группы дневного отделения естественно-географического факультета Специальность -050102.65 Биология с дополнительной специальностью 050103.65 География

Научный руководитель: доцент географических наук, старший преподаватель Марков Дмитрий Сергеевич

    Мирового океана Реферат >> Экология

    М. ИСПОЛЬЗОВАНИЕ ВОД МИРОВОГО ОКЕАНА Загрязнение морских вод . Действительно ли Мировой океан находится... мнение о неограниченных возможностях вод Мирового океана к самоочищению. Многие это... Северном море, где плотность движения танкеров самая высокая в мире, ...

  1. Проблема загрязнения мирового океана (2)

    Реферат >> Экология

    Природные процессы, происходящие в Мировом океане, - движение , температурный режим вод - являются неистощимыми энергетическими... результате круговорота воды в природе вся вода Мирового океана обновляется. Глава II. Загрязнение Мирового Океана как глобальная...

  2. Проблемы нефтяных загрязнений мирового океана

    Реферат >> Таможенная система

    ... мирового океана ; 2. загрязнение нефтью мирового океана : - нефть и нефтепродукты; - ответственность за разливы нефти; 3. борьба с загрязнением вод мирового океана ...) острова, гавани, лагуны и устья. Движение воды зависит от приливов и отливов, сложных...

Динамика вод Мирового океана. Волны. Общие положения

Одной из основополагающих характеристик Мирового океана, как части гидросферы, является непрерывное движение и перемешивание вод.

Движение водных масс происходит не только на поверхности Мирового океана, но и в его глубинах, вплоть до придонных слоев. Динамика воды наблюдается во всей ее толще, как в горизонтальном, так и в вертикальном направлении. Данные процессы поддерживают регулярное перемешивание водных масс, перераспределение тепла, газов и солей, что обеспечивает постоянство химического, солевого, температурного и газового составов. К формам движения (динамики) водных масс в Мировом океане относятся:

  • волны и зыбь;
  • волны стихийного характера;
  • течения и приливы;
  • конвективные токи и т. д.

Волны – это явление, образующееся под действием внешних сил различного характера (ветра, Солнца и Луны, землетрясений и т.д.) и представляющее собой периодические систематические колебания частиц воды. Основной причиной образования волн на поверхности любого водного объекта, к которым относятся и воды Мирового океана – является ветер и ветровые процессы. Незначительная скорость ветра равная порядка $0,2-0,3$ м/с в процессе трения воздуха о поверхность водных масс вызывает систему незначительных равномерных волнений, называемых рябью. Рябь проявляется при единовременных порывах ветра и моментально затухает при отсутствии воздействия ветровых процессов. Если скорость ветра составляет $1$ м/с и более, то в таких случаях формируются ветровые волны.

Формирование волнений вод Мирового океана может быть вызвано не только благодаря воздействию ветровых процессов, но и также резким изменением атмосферного давления, приливообразующими силами (приливные волны), стихийными процессами - землетрясениями, извержениями вулканов (сейсмические волны – цунами). Корабли, яхты, паромы, лодки и прочие судоходные инженерные сооружения, в процессе своей непосредственной деятельности, при рассекании поверхности водного зеркала создают особые волны называемые корабельными.

Волны, формирующиеся исключительно под влиянием внешних, вызывающих их сил, - вынужденные. Волны, которые продолжают свое существование некоторое количество времени после того, как сила, вызывающая их, прекратила свое действие называются свободными. Волны, которые сформированы на поверхности водного зеркала, а также в самом верхнем слое водных масс Мирового океана (до $200$м.) –поверхностные.

Волны, возникающие в более глубоких частях океанов и визуально незаметные на поверхности воды, называются внутренними волнами.

Сила и размер ветровых волн напрямую зависят от скорости ветра, временной составляющей его воздействия на поверхность водного зеркала, а также размера и глубины пространства водных масс, охваченных ветровыми процессами. Высота волн, от основания до ее гребня, обычно составляет не более $5$ метров, значительно реже наблюдаются волны с высотой от $7$ до $12$ метров и более. Самыми большими по размеру и силе ветровые волны образуются в южном полушарии Земли, это объясняется тем, что в этой части океан непрерывен, отсутствуют крупные участки суши в виде материков или островов, а также на высоту волн оказывают влияние сильные и постоянные западные ветры. Волны в этом регионе Мирового океана могут достигать $25$ метров в высоту, а их длина может составлять сотни метров. Гораздо меньше волны в открытых и особенно во внутренних морях, чем в открытом океане. Например, в Черном море максимальная отмеченная высота волн составляет $12$ метров, в Азовском море эти показатели на порядок ниже – $4$ метра.

В момент, когда прекращается ветровая деятельность в океане формируются длинные пологие волны – зыбь. Зыбь – это наиболее идеальная и неискаженная форма волны. Поскольку зыбь – это и есть по сути свободное волнение, то и распространяется эта волна гораздо быстрее по сравнению с другими волнами. Длина такой волны в состоянии зыби может устанавливаться до нескольких сотен метров, а принимая во внимание их малую высоту, волновые процессы зыби в Мировом океане, особенно на открытых его участках, практически незаметны.

Однако, поскольку распространение волн происходит со значительной скоростью, то они имеют свойство обрушиваться на береговую часть суши за несколько сотен и даже тысяч километров от места их первоначального образования. Движение водных масс с глубиной активно затухает. На глубине, равной длине волны, волнение практически прекращается.

Так как длины ветровых волн во многих случаях является не значительной, то даже при самом активном волнении, на глубине от $50$ метров и глубже данные волны практически не ощутимы. Таким образом, сила волн напрямую зависит от ее высоты, длины и ширины гребня. Но основная роль все-таки принадлежит ее высоте.

Из-за непостоянства водной среды и регулярной динамики и перемешивания, слои водных масс Мирового океана обладают различной степенью плотностью, вязкости, скорости движения, солевого состава. Наиболее ярким примером служат районы Мирового океана, где присутствуют такие явления как таяние ледников, айсбергов, в местах интенсивного выпадения атмосферных осадков и в устьях полноводных рек. В данном случае воды Мирового океана покрываются слоем пресной воды, формируя необходимые условия для образования так называемой внутренней волны, проходящей на поверхности водораздела пресных и соленых водных масс.

Замечание 1

На основании океанологических исследований было установлено, что внутренние волны в открытом Мировом океане встречаются с той же частотой, что и волны поверхностные. Довольно часто основными механизмами образования внутренних волн являются процессы изменения атмосферного давления, скорость ветра, землетрясения, приливообразующие и другие факторы. Внутренние волны характеризуются значительной амплитудой, но не большой скоростью распространения. Высота внутренних волн как правило достигает $20–30$ м, но может составлять и до $200$ метров. Волны с такой высотой характеризуются как редкое и непостоянное явление, но все же встречаются, например, в Южной Европе в районе Гибралтарского пролива.

Течения Мирового океана

Морские течения - одна из важнейших форм движения в Мировом океане. Течениями называются относительно правильные периодические и постоянные глубинные и поверхностные перемещения масс вод Мирового океана в горизонтальном направлении. Основные течения Мирового океана представлены на рис.1.

Данные перемещения водных масс играют одну из первоочередных ролей как в жизни Мирового океана, так и его обитателей, к которым относятся:

  • обмен вод Мирового океана;
  • создание особых климатических условий;
  • рельефообразующая функция (преобразование береговой линии);
  • перенос масс льда;
  • создание условий обитания для жизни биологических ресурсов океанов.

Также одной из ведущих ролей океанических течений является циркуляция атмосферы и создании определенных климатических условий различных частей планеты.

Огромное количество течений Мирового океана можно разделить на категории:

  • по происхождению;
  • по устойчивости;
  • по глубине расположения;
  • по характеру движения;
  • по физико-химическим свойствам.

По происхождению течения в свою очередь подразделяются на: фрикционные, градиентные и приливно-отливные. Фрикционные течения образованы под воздействием ветровых сил. Так, фрикционные течения, которые вызваны временными ветрами, называют ветровыми, а вызванные господствующими ветрами-дрейфовыми. Среди градиентных течений можно выделить: бароградиентные, стоковые, сточные, плотностные (конвекционные), компенсационные. Стоковые течения формируютсяв результате наклона уровня моря, которое вызвано впадением речных пресных вод в океанические воды, выпадением атмосферных осадков или их испарением; сточные обусловлены наклоном уровня моря, характеризующегося впадением воды из других районов моря под воздействием внешних сил.

Течения приводят к снижению объема воды в одной части Мирового океана, вызывая снижение уровня, и увеличению в другой. Разность уровней между частями Мирового океана мгновенно приводит к движению соседние части, которые стремятся ликвидировать эту разность. Таким образом, рождаются компенсационные течения, то есть течения вторичного характера, возмещающие отток воды.

Приливно-отливные течения создаются составляющими приливообразующих сил. Наибольшую скорость эти течения имеют в узких проливах (до $22$ км/ч), в открытом океане она не превышает $1$ км/ч. В море редко наблюдаются течения, обусловленные только одним из указанных факторов или процессов.

По устойчивости течения подразделяются на постоянные, периодические и временные течения. Постоянные – это течения, всегда находящиеся в одних и тех же районах Мирового океана и практически не изменяющие свои скорость и направление за конкретный сезон или календарный год. К ярким примерам таких течений можно отнести пассатные течения, такие как Гольфстрим и другие. Периодические – это течения, направление и скорость которых изменяются на основании тех изменений, которые вызвали их причин. Временные – это течения вызываемые причинами случайного характера (порывами ветра).

По глубине течения можно разделить на поверхностные, глубинные и придонные. По характеру движения - меандрирующие, прямолинейные и криволинейные. По физико-химическим свойствам - теплые, холодные и нейтральные, соленые и распресненные. Характер течений формируется из соотношения показателей температуры или соответственно солености воды, формирующих течение. Если температура течений превышает температуру окружающих водных масс, то течения называются теплыми, а если ниже – холодными. Аналогично с этим определяются соленые и распресненные течения.

Сейсмические и приливные волны

    Сейсмические волны (цунами)

    Основной причиной формирования сейсмических волн (цунами) являются преобразование рельефа океанического дна, происходящие в результате движения литосферных плит, следствием которых являются землетрясения, оползни, провалы, поднятия и другие явления, которые носят стихийный характер и возникают моментально на значительных участках океанического дна. Стоит отметить, что механизм зарождения сейсмических волн во многом зависит от характера процессов, преобразующих рельеф океанического дна. Например, при формировании цунами в открытом океане в процессе появления провала или трещины на дне участка Мирового океана, вода мгновенно устремляется в центр образованного углубления, заполняя сначала его, а вслед за этим переполняет, образуя огромный по объему столб воды на поверхности океана.

    Замечание 2

    Образованию цунами в открытом океане и их обрушению на берег как правило предшествует снижение уровня воды. Всего за несколько минут вода отступает от суши на сотни метров, а в отдельных случаях и на километры, после этого на берег обрушиваются цунами. Вслед за первой самой крупной волной обычно приходят еще в среднем от $2$ до $5$ волн меньшего размера, с интервалом от $15-20$ минут до нескольких часов.

    Скорость распространения волн цунами огромна и составляет $150-900$ км/ч. Обрушиваясь на побережья и населенные пункты, расположенные в зоне воздействия таких волн, цунами способны уносить человеческие жизни, разрушать объекты инфраструктуры, производственные здания и социальные объекты. Примером наиболее разрушительных цунами за последнее время может служить цунами в Индийском океана в $2004$ г., которое унесло жизни более чем $200$ тысяч человек и причинило ущерб на миллиарды долларов.

    Появление цунами, в настоящий момент, можно предсказать с высоким коэффициентом точности. Основами таких прогнозов является наличие сейсмической активности (толчков) под толщей вод Мирового океана. Как правило, предсказания осуществляются по средствам следующих способов:

    • сейсмический мониторинг;
    • мониторинг с помощью мареографов (над уровнем поверхности Мирового океана);
    • акустические наблюдения.

    Данные способы позволяют вырабатывать и предпринимать превентивные меры, направленные на обеспечение безопасности жизнедеятельности.

    Приливные волны

    Замечание 3

    Приливные волны – это явления, возникающие под воздействием сил притяжения Луны и Солнца и характеризующиеся периодическими колебаниями уровня Мирового океана. Действующие силы притяжения в системе Земля-Луна, а также центробежная сила, объясняют формирование приливных волн, одна из которых возникает на стороне, которая обращена к Луне, а другая – на противоположной.

    Формирование приливной деятельности обусловлено не только участием Луны, но и влиянием Солнца, однако из-за гораздо большей удаленности Солнца от Земли, солнечные приливы более чем в $2$ раза меньше лунных. Ключевое влияние на приливы оказывают очертания береговой линии, наличие островов и так далее. Эта причина объясняет то, как приливные колебания уровня Мирового океана на одной и той же широте изменяются в широких пределах. Незначительные приливы наблюдаются у островов. В открытых водах Мирового океана подъем воды во время прилива может достигать не более $1$ метра. Гораздо больших значений приливы достигают в устьях рек, проливах и в заливах с извилистыми берегами.

Воды Мирового океана находятся в постоянном движении. Различают два вида движения: волнение и течения.

Волнение. Главная причина волн - ветер. Ветровые волны - это лишь колебательное движение водной поверхности. Его можно сравнить с «хлебным» полем, по которому бегут волны от ветра. Чем сильнее и продолжительнее ветер и больше акватория, тем выше волны. Неоднократно отмечались волны высотой до 18- 20 м и даже более. Лишь близ берега вода получает поступа­тельное движение, причем из-за большей скорости частиц воды вверху, где меньше трение, волны запрокидываются, образуется прибой. Для оценки степени ветрового волнения моря применяется 9-балльная шкала: чем сильнее волнение, тем выше балл. Волны влияют на самочувствие людей, разрушают побережья, сильное волнение опасно для судов. В то же время волны, перемешивая. воду, способствуют обогащению толщи воды кислородом и теп­лом, а также выносу к поверхности питательных веществ. Все это благоприятствует жизнедеятельности организмов.

Помимо ветровых волн, есть волны другого происхождения, например цунами. Это гигантские волны, вызываемые подводными и прибрежными землетрясениями, а также извержениями вулка­нов, распространяющиеся с огромной скоростью - до 800 км/ч. В открытом океане они невысокие, но на мелководье цунами достигают 20-30 м, обладают колоссальной энергией, поэтому производят на побережье огромные опустошения.

Приливно-отливные волны вызывают колебания поверхности Мирового океана относительно его среднего уровня в связи с притяжением Земли Луной и Солнцем. В зависимости от расчле­ненности и конфигурации береговой линии высота приливов весьма различна. Максимальная высота (18 м) наблюдается в заливе Фанди, у Ньюфаундленда; в России, в заливе Шелихова они достигают

12 м. За лунные сутки, которые на 50 мин длиннее солнечных, на Земле наблюдается два прилива и два отлива. Приливная волна, а с нею и океанские суда заходят в реки на десятки и сотни километров.

Морские течения. Это горизонтальные движения воды в океанах и морях, характеризующиеся определенным направлением и ско­ростью. Их длина достигает нескольких тысяч километров, ширина - десятки, сотни километров, глубина - сотни метров. Широко распространенное сравнение течений с реками не совсем удачное. Во-первых, в реках вода движется по уклону, а морские течения под действием ветров могут перемещаться вопреки уклону поверхности. Во-вторых, у морских течений меньше скорость течения, в среднем 1-3 км/ч. В-третьих, течения многоструйны и многослойны и по обе стороны от осевой зоны представляют собой систему вихрей.

Морские течения классифицируют по ряду признаков. По продолжительности выделяют постоянные течения (например, Северное и Южное пассатные), периодические (летние и зимние муссонные на севере Индийского океана или приливно-отливные в прибрежных частях океанов) и временные (эпизоди­ческие).



По глубине расположения в толще воды различают поверх­ностные, глубинные, придонные течения.

По температурному признаку - теплые и холодные течения. Эта классификация основана не на абсолютной, а на относитель­ной температуре воды. Теплые течения имеют температуру воды выше, чем окружающая вода, холодные - наоборот. Теплые, как правило, направлены от экватора к полюсам, холодные - от полю­сов к экватору.

По происхождению среди поверхностных течений выделяют:

дрейфовые, вызванные постоянными ветрами; ветровые, возни­кающие под влиянием сезонных ветров; сточные, текущие из районов избытка воды и стремящиеся выровнять поверхность воды; компенсационные, возмещающие убыль воды в каком-либо районе океана. Большинство течений вызвано совместным действием ряда факторов.

В настоящее время установлена определенная система тече­ний океана, обусловленная прежде всего общей циркуляцией атмосферы (рис. 12). Схема их такова. В каждом полушарии по обе стороны от экватора существуют большие круговороты течений вокруг постоянных субтропических барических максиму­мов: по часовой стрелке - в северном полушарии, против часо­вой - в южном. Между ними выявлено экваториальное противотечение с запада на восток. В умеренных - субполярных широтах северного полушария наблюдаются малые кольца течений вокруг барических минимумов против часовой стрелки, в южном полу­шарии - течение с запада на восток вокруг Антарктиды.

Наиболее устойчивыми течениями являются Северное и Южное пассатные (экваториальные) течения по обе стороны от эква­тора в Тихом, Атлантическом и в южном полушарии Индийского океанов, «перекачивающие» воду с востока на запад. У восточных бе­регов материков в тропических широтах характерны теплые сточ­ные течения: Гольфстрим, Куросиво. Бразильское, Мозамбикское, Мадагаскарское, Восточно-Австра­лийское. Это течения-аналоги не только по происхождению, но и по физико-химическим свойствам вод.

В умеренных широтах под дей­ствием постоянных западных вет­ров существуют теплые Северо-Атлантическое и Северо-Тихоокеанское течения - в северном полу­шарии и холодное (а правильнее было бы сказать нейтральное) течение Западных ветров, или Западный дрейф, - в южном. Это мощное течение образует кольцо в трех океанах вокруг Антарктиды.

Замыкают большие круговороты холодные компенсационные те­чения-аналоги вдоль западных берегов материков в тропических широтах:

Рис. 12. Схема течений Мирового океана:

1 - теплые течения, 2 - холодные те­чения

Калифорнийское, Канарское, Перуанское, Бенгельское, Западно-Австралийское.

В малых кольцах течений следует отметить теплое Норвеж­ское и холодное Лабрадорское течения в Атлантике по перифе­рии Исландского минимума и аналогичные им Аляскинское и Курило-Камчатское - в Тихом океане по периферии Алеутского минимума.

В северной части Индийского океана муссонная циркуляция порождает сезонные ветровые течения: зимой с востока на запад, летом с запада на восток. Летом здесь еще хорошо выражено Сомалийское течение - единственное холодное течение от эква­тора. Оно связано с юго-западным муссоном, отгоняющим воду от берегов Африки у полуострова Сомали и вызывающим тем самым подъем холодных глубинных вод.

В Северном Ледовитом океане главное направление движения вод и дрейфа льдов - с востока на запад, от Новосибирских островов в Гренландское море. Именно там заканчивают свое существование научно-исследовательские станции «Северный полюс» (СП), начиная с СП-1 - героической четверки папанин-цев (1937-1938). Пополняется Арктика водами из Атлантики в виде Нордкапского, Мурманского, Шпицбергенского и Ново-земельского течений, воды которых более соленые и потому более плотные погружаются под лед.

Значение морских течений для климата и природы Земли в целом и особенно прибрежных районов велико. Морские течения наряду с воздушными массами осуществляют перенос тепла и холода между широтами. Теплые и холодные течения во всех климатических поясах поддерживают температурные различия на западных и восточных побережьях материков, нарушают зональ­ное распределение температуры. Например, незамерзающий Мур­манский порт за полярным кругом, а на побережье Северной Америки к северу от г. Нью-Йорка отрицательные зимние темпе­ратуры. Течения оказывают влияние и на количество осадков. Теплые течения способствуют развитию конвекции и выпадению осадков. Космонавты отмечают характерные облачные образова­ния, сопровождающие теплые течения на всем их протяжении.

Холодные течения, ослабляя вертикальный обмен воздушных масс, уменьшают возможность выпадения осадков. Поэтому тер­ритории, омываемые теплыми течениями и находящиеся под влия­нием воздушных потоков с их стороны, имеют влажный климат, а территории, омываемые холодными течениями, сухой. Морские течения также способствуют перемешиванию воды и осуществляют перенос питательных веществ и газовый обмен, с их помощью осуществляется миграция растений и животных.

Природные ресурсы океана, его охрана

Органические (биологические) ресурсы океана. Они имеют наибольшую ценность, особенно рыбные. На долю рыб приходится до 90 % всех органических ресурсов океана. На первом месте в мировом рыбном промысле стоят сельдевые - почти треть всего улова, много добывается тресковых и камбаловых. Богат­ство океана - лососевые и особенно осетровые. Основной улов рыбы приходится на шельфовую зону. Рыба используется не только как пищевой продукт. Она идет на кормовую муку (ан­чоус и др.), технический жир, на удобрения.

Зверобойный промысел (промышляют моржей, тюленей, морских котиков) и китобойный промысел сейчас ограничены. В странах Юго-Восточной Азии и некоторых других теплых приморских странах широко употребляются в пищу моллюски (устрицы, мидии, морские гребешки, кальмары, осьминоги и др.), а из иглокожих - трепанги. Важным природным ресурсом океана являются водоросли, которые используют для приготовления продуктов питания, для получения йода, как удобрение, на корм скоту и для изготовления бумаги, клея, тканей и т. д. Хотя орга­нические ресурсы океана велики, необходимо беречь их от исто­щения, от гибели в связи с загрязнением акваторий, обеспечивать естественное возобновление, переходить от экстенсивного исполь­зования и свободной охоты к культурному хозяйству - разведе­нию морских животных и возделыванию водорослей.

Химические и минеральные ресурсы. Это, прежде всего сама вода, растворенные в ней химические элементы, а также полез­ные ископаемые, залегающие на дне и в грунтах. Из морской воды ежегодно добывают миллионы кубических метров пресной воды в результате дистилляции. В мире уже действуют более 100 опреснительных установок в «районах жажды» (Кувейт, запад США, город Шевченко на Каспии и др.). Однако стоимость такой пресной воды еще высока. Из морской воды извлекают поваренную соль, магний, бром, калий.

Основные полезные ископаемые, добываемые в море на шельфе - нефть и газ (Персидский и Мексиканский заливы, Северное море, «Нефтяные камни» на Каспии и другие районы). Добыча их продолжает стремительно расти, и уже в ближайшие годы предпо­лагается половину всей нефти и газа добывать за счет место­рождений шельфа. Так, только в Северном море в 1987 г. добыли 165 млн. т нефти и 83 млрд. км 3 газа, хотя первые скважины появились недавно - в 1964 г. Сейчас там действуют 300 буровых платформ, принадлежащих разным странам, а по дну моря проло­жено более 6000 км нефте и газопроводов. Начата добыча каменного угля (Англия, Япония), железной руды (у полуострова Ньюфаундленд), олова (Малайзия) и др. Дно океана устлано осадочными железомарганцевыми конкрециями, большие запасы фосфоритов, стройматериалов. У берегов ЮАР ведется добыча алмазов, выносимых реками с суши.

Энергетические ресурсы Мирового океана. Они огромны. Уже действуют (Франция) и проектируются электростанции, работающие на энергии приливов (ПЭС). В жарком поясе рабо­тают гидротермические станции, использующие разницу темпера­тур теплых поверхностных и холодных глубинных вод. В морской воде содержится дейтерий (тяжелая вода) - будущее топливо ядерных реакторов. Если научатся использовать энергию волн (есть проекты), то человечество получит неиссякаемый источник энергии.

Огромно значение океана в транспортном отношении.

Охрана природы Мирового океана. Эта актуальная проблема международного масштаба. В век научно-технической революции резко возросло поступление в океан загрязняющих веществ: промышленных отходов, нефти, бытовых сточных вод, удобрений, пестицидов и др. Это приводит к нарушению природных взаимо­связей и динамического равновесия. Океан оказался легкоранимым сразу на больших пространствах в силу своей подвижности. Особенно пагубно для всего живого нефтяное загрязнение, а по подсчетам ученых сейчас ежегодно в океан попадает около 10 млн. т нефти и нефтепродуктов при ее добыче, промывке танкеров, их авариях. Нефтяная пленка нарушает влагообмен и газообмен, в том числе кислородом, губит планктон, рыбу и вообще все живые организмы, которые концентрируются в основ­ном в поверхностном слое воды.

Для познания природы и тайн Мирового океана нужны разно­сторонние научные исследования. В настоящее время они широко проводятся во многих странах и координируются ЮНЕСКО (Ор­ганизация Объединенных Наций по вопросам образования, науки и культуры). Изучение Мирового океана, принадлежащего всему человечеству, стало ярким примером международного сотрудни­чества.

Принципиально новый метод - исследование океана из космо­са. С космических орбит ведется изучение динамики вод океана, взаимодействие его с атмосферой, наблюдение за ледовой обстановкой, особенно вдоль трассы Северного морского пути, опасных стихий­ных явлений (цунами, тайфунов, подводной вулканической дея­тельности), оценка и прогноз пищевых запасов, в частности рыбы, изучение шельфа с целью поиска полезных ископаемых, контроль за загрязнением вод, анализ экологических последствий, вызван­ных загрязнением, а также многое другое.

Проводятся специальные международные конференции, кото­рые на основании новейших научных данных принимают решения по рациональному использованию ресурсов Мирового океана и охране его вод.

Вопросы и задания:

1. Что такое Мировой океан, и на какие части он делится? Почему это деление условное?

2. Дайте определения понятиям: море, залив, пролив, полуостров, остров.

3. Расскажите о классификации морей по местоположению. Приведите примеры.

4. Какая закономерность установлена в распределении температуры поверх­ностных вод Мирового океана? Какими причинами она обусловлена?

5. Каков состав солей Мирового океана? Его средняя соленость? Как и почему изменяется соленость поверхностных вод океана от экватора к полюсам?

6. Какие движения воды в Мировом океане вы знаете? Назовите типы волн.

7. Что такое морские течения? Как их классифицируют?

8. Назовите и охарактеризуйте наиболее крупные морские течения. Рас­скажите о происхождении течений, о их температуре.

9. Какими природными ресурсами обладает океан?

10. Почему Мировой океан нуждается в охране? Расскажите о наиболее важных экологических проблемах океана на современном этапе?

Воды суши

Вспомните! О происхождении вод суши. Почему эти воды в большинстве своем пресные? Почему они неравномерно распределены на поверхности мате­риков? От чего зависит обеспеченность той или иной территории суши водой?

Подземные воды

Подземные воды - это воды, находящиеся в почвах и горных породах верхней части земной коры. Они заполняют поры рыхлых пород и трещины твердых горных пород. Они могут быть во всех трех агрегатных состояниях: жидком, твердом и газообразном. Подземные воды образуются главным образом за счет просачива­ния вглубь атмосферных осадков во время дождей или таяния снега и льда. Часть подземных вод возникает в результате кон­денсации водяного пара, который попадает в земную кору из атмосферы или выделяется из магмы. На равнинах, сложенных осадочными горными породами, обычно чередуются слои, обла­дающие различной водопроницаемостью. Одни из них легко про­пускают воду (пески, галечники, гравий) и называются поэтому водопроницаемыми, другие задерживают воду (глина, кристалличе­ские сланцы) и называются водонепроницаемыми, или водоупорны­ми. На водоупорных породах просачивающаяся вниз вода задержи­вается, заполняет промежутки между частицами вышележащей во­допроницаемой породы и образует водоносный горизонт. Таких горизонтов в одной и той же местности может быть несколько, иногда до 10-15. Вода глубоких водоносных горизонтов в боль­шинстве случаев образовалась в период формирования тех осадоч­ных горных пород, в которых они заключены. По условиям залега­ния подземные воды подразделяются на почвенные, грунтовые и межпластовые.

Почвенные воды, как свидетельствует их название, заключены в почвах. Обычно они не заполняют всех промежутков между частицами почвы. Почвенные воды могут быть как свободными (гравитационными), перемещающимися под влиянием силы тяже­сти, так и связанными, удерживаемыми молекулярными силами. Подземные воды, образующие водоносный горизонт на первом от поверхности водоупорном слое, называются грунтовыми. Ниже­лежащие водоносные горизонты, заключенные между двумя водо­упорными слоями, называются межпластовыми . В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повы­шается после выпадения осадков или таяния снега, то понижа­ется в засушливое время. В суровые зимы грунтовые воды могут промерзать. Эти воды в большей мере подвержены загрязнению.

Различна глубина залегания грунтовых вод в разных природ­ных районах. Она в первую очередь определяется климатическими условиями: в степных, полупустынных и пустынных ландшафтах грунтовые воды залегают значительно глубже, чем в лесных и тундровых ландшафтах. Большое влияние на глубину залегания грунтовых вод оказывает степень расчленения территории. Чем сильнее и глубже расчленение местности реками, балками и овра­гами, тем глубже находятся грунтовые воды.

В отличие от грунтовых уровень межпластовых вод более пос­тоянен, он меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые. Если межпластовые воды полностью заполняют водоносный горизонт и находятся под давлением, они называются напорными. Напором обладают все воды, заключен-­

ные в слоях, залегающих в вогнутых тектонических структурах. Вскрытые скважинами, эти воды поднимаются вверх и при доста­точной высоте напора изливаются на поверхность или фонтани­руют. Такие воды называются артезианскими (рис. 13).

Подземные воды медленно перемещаются по уклону водонос­ного пласта. В речных долинах, балках, оврагах слои могут вскры­ваться (обычно это грунтовые воды), образуются естественные их выходы на земную поверхность - источники, или родники. Своеобразный тип источников - гейзеры, периодически выбрасы­вающие горячую воду и пар на высоту до 60 м. Они образуются в основном в областях современного вулканизма, где близко от поверхности залегает раскаленная магма. Гейзеры встречаются в США, СССР (на Камчатке), в Исландии, Новой Зеландии.

Подземные воды различны по химическому составу и темпера­туре. Верхние горизонты подземных вод обычно пресные (до 1 г/л) или слабоминерализованные, глубокопогруженные гори­зонты нередко значительно минерализованы (до 35 г/л и более). По температуре они подразделяются на холодные (до +20 "С) и термальные (от +20 до +100°С). Термальные воды обычно отличаются высоким содержанием различных солей, кислот, металлов, радиоактивных и редкоземельных элементов.

Подземные воды имеют большое значение в природе и хозяй­ственной деятельности человека. Это важнейший источник питания рек и озер, при участии подземных вод формируются карстовые и оползневые формы рельефа, они

Рис. 13. Схема строения артезианского бассейна:

1- межпластовые воды в песках, 2 - водоупорные породы, (глины), 3 - родник, 4 - уровень напорных меж­пластовых вод, 5- фонтанирующая скважина

снабжают растения влагой и растворенными в них элементами питания. При близком залегании от поверхности подземные воды могут вызывать процессы забола­чивания. Они широко используются человеком для хозяйственно-бытовых, промышленных и сельскохозяйственных целей.* Из тер-мальных вод получают большое количество различных химиче­ских веществ (йод, глауберову соль, борную кислоту, различные металлы). Тепловая энергия подземных вод расходуется для обогрева зданий, теплиц, получения электроэнергии, наконец, подземные воды применяются для лечения целого ряда заболева­ний человека.
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • сформировать знания о видах движений воды в океане, в том числе о ветровых, цунами, приливно-отливных течениях;
  • развивать умение выделять причинно-следственные связи;
  • воспитание географической культуры и эстетического восприятия географических объектов.

Тип урока: урок изучения нового материала и первичного закрепления знаний.

Оборудование:

  1. Электронная презентация на интерактивной доске.
  2. Карта полушарий (физическая).
  3. Атласы.
  4. Раздаточный материал.

Методы: объяснительный рассказ учителя, самостоятельная работа, проблемное изложение.

Знать: виды волн, части волн. Причины образования волн.

Уметь: анализировать увиденное и услышанное, составлять причинно-следственные цепочки, работать с таблицами и схемами.

Ход урока

I. Организация класса.

Учитель: Какую тему мы изучали на прошлом уроке? - Мировой океан

А сейчас внимание, проведем проверку изученного материала, часть, по желанию, пройдет тест, часть ответит у карты, но т.к. я вас не знаю, буду называть вас по журналу.

II. Тестирование по домашнему заданию (5 минут)

  1. Расставить океаны в порядке увеличение площади, начиная с самого маленького: Индийский, Тихий, Северный Ледовитый, Атлантический.
  2. Самый глубокий океан: Северного Ледовитого, Тихого, Индийского, Атлантического.
  3. Море, практически, со всех сторон окружённое сушей: окраинное, материковое, межостровное, внутреннее.
  4. Самая наибольшая соленость наблюдается в: Красном море, Балтийском море, Персидском заливе, Средиземном море.
  5. Средняя солёность вод Мирового океана составляет: 28‰, 35‰, 37‰, 42‰.
  6. Какие океаны соединяются Беринговым проливом: Северный Ледовитый и Тихий, Атлантический и Индийский, Атлантический и Тихий, Индийский и Тихий.
  7. Марианская впадина является частью: Атлантического, Северного Ледовитого, Тихого, Индийского океана.
  8. В каком океане наблюдается наибольшая площадь шельфа: Атлантическом, Северном Ледовитом, Тихом, Индийском.
  9. Самый крупный остров Земли: Мадагаскар, Новая Гвинея, Гренландия, Сахалин.

Мотивация.

УЧИТЕЛЬ: на экран проецирует картину И. К. Айвазовского «Чёрное море», читает стихотворение А.С. Пушкина (слайд 3)

Прощай, свободная стихия!
В последний раз передо мной
Ты катишь волны голубые
И блещешь гордо красотой…

Как вы думаете, о чём сегодня на уроке пойдёт речь? Какая тема объединяет картину и стихотворение? (волны).

Вы, наверное, и не догадываетесь, сколь глубоки и обширны ваши «научные» познания о морских волнах. Ещё 100 лет назад один большой насмешник, Кузьма Прутков, высказал не лишённую справедливости мысль: «Бросая в воду камешки, смотри на круги ими образуемые; иначе такое бросание будет пустою забавою».

  • А вы бросали камешки в воду?
  • Устраивали бурю в стакане?
  • А штормы в тарелке и настоящие ураганы в ванне? (слайд 4)
  • Какие вопросы у вас возникали?

Если не лениться наблюдать, как ведёт себя при этом вода, если задавать побольше вопросов, если стараться на них самому отвечать, то это будет не пустая забава, а самое настоящее научное исследование.

Какие же исследования мы сможем сегодня с вами провести?

  • ? Откуда берутся в море волны?
  • ? Почему движутся волны?
  • ? Какие они бывают?
  • ? Для чего нам необходимо изучать волны? (слайд 5)

Итак, запишем, число и тему урока!

II. Изучение нового материала. Ветровые волны.

Мировой океан находится в постоянном движении. Кроме волн, спокойствие вод нарушают: п/о, цунами, течения – все это разные виды движения вод в океане.

1) УЧИТЕЛЬ на экран проецирует рисунок волны. УЧЕНИКИ называют части волны и пробуют дать им определение. УЧИТЕЛЬ проверяет правильность ответов (слайд 6).

2) УЧИТЕЛЬ задаёт? Откуда берутся в море волны? – каждый, пожалуй, сразу даст правильный ответ: волны раскачивает ветер. Люди поняли это давно: не зря по углам старинных морских карт изображали Ветродуев (слайд 7).

Как они выглядели и для чего их помещали на карты? (ветры, обычно изображены как пухлые физиономии с раздутыми щеками – они дуют на море, как на тарелку с горячим супом)

3) А вот ещё один важный вопрос, ответить на который будет потруднее: как и почему движутся волны?

Чтобы в этом разобраться, поставим – как ещё раз известный всем опыт – бросим камешек в воду. По воде расходятся круги. Но это не вся, правда. Попробуем посмотреть всё как бы изнутри – представьте, что вы – дождевая капля, падающая в пруд. Вода только кажется мягкой и податливой. На самом деле там всё занято миллионами капелек, тесно прижатых друг к другу. Как вы вынуждены будете себя вести? УЧЕНИКИ моделируют ситуацию. (Чтобы отвоевать себе место, надо растолкать других).

В начавшейся давке и неразберихе всем каплям, которые нас окружают, остаётся одно: перекувыркнувшись, выбраться повыше, где на вас никто не будет давить. Но долго над водой держаться невозможно и под собственным весом вы начинаете опускаться, выталкивая другие капли подальше, сообщая всем о вашем прибытии, по воде идут волны, а круг от них всё шире. Так волна идёт к берегу, принеся ему весть, что в пруду стало одной каплей больше.

Итак, понаблюдаем, как двигаются волны из видеофрагмента. УЧИТЕЛЬ – как движется вода в волне?

ВЫВОД: (слайд 8)

каждая частичка, качнувшись вместе с волной, останется на том же месте. Волна не уносит с собой даже капли воды. Движутся лишь очертания волны. Волна – это лишь летящее известие, сообщение: «Где-то что-то произошло». Вспомните волны на пшеничном поле. Как и морские странницы, они пробегают всё поле от края до края, но ни один колосок не преодолевает этот путь вместе с волнами.

4) А знаете ли вы? От чего же зависит высота волны? УЧЕНИКИ с помощью текста стр. 97 или самостоятельно составляют причинно-следственную цепочку.

УЧИТЕЛЬ проецирует правильную схему. УЧЕНИКИ оценивают свои знания (слайд 9). Сила ветра, глубина моря, продолжительность ветра.

5) УЧИТЕЛЬ проецирует на экран картину Мальцева П. Т. «Морской берег» (слайд 10). Мы с вами видим уже вторую картину моря. Какие чувства они у вас вызывают? (Свежесть ветра, влажность воздуха). Этот ветер называется дневной бриз, от силы ветра зависит и силы волны (самая маленькая это штиль, шторм и самая разрушительная ураган).

ВЫВОД: причиной образования ветровых волн является ветер. Частицы воды в волне колеблются вертикально и перемещения воды при этом не происходит. Высота волны зависит от силы ветра, длительности его действия, глубины водоёма.

УЧИТЕЛЬ: обратимся к таблице «Виды волн». Можем мы начать её заполнение? (да). Заполняем.

Следующим видом движения воды в океане, цунами.

6) Цунами. (слайд 11).

1. Описание цунами - чтение отрывка… Учитель: О какой волне идет речь в только что прослушанном отрывке?

Вдруг стихает шум прибоя, и далеко в море уходит вода, обнажая дно. В этой внезапно наступившей тишине для островитянина - верный признак надвигающей беды. Теперь не мешкать, скорее в сопки, в горы, подальше от домашнего очага. Стена воды, увенчанная снежной пеной, летит на портовые сооружения, на город. Проходит немного времени, и в водовороте воды кружатся дома, причалы, скот…

2. Дети: – цунами

3. Понятие «цунами» чтение со слайда

УЧИТЕЛЬ: Вспомните причину их возникновения.

4. Причины образования (землетрясения) (слайд 12).

Почему слово цунами имеет японское происхождение? (часто здесь случаются)

Задание: что характерно для этого вида волн?

5. Катастрофическое землетрясение в Чили 21 мая 1960 года вызвало крупные изменения в рельефе морского дна. Это породило гигантские морские волны - цунами, которые распространились по всему Тихому океану и за его пределы. Эти чудовищные волны мчались по Тихому океану со скоростью реактивного самолёта. В эти дни Чили первым приняло на себя удар морской стихии. На его побережье сотни людей были снесены в океан, разрушены поселки, портовые сооружения.

Опустошительный вал пересёк Тихий океан, обрушился на Гавайские острова, побережье Новой Зеландии, Австралии, Филиппин, Японии, на Курильские острова и Камчатку. Огромное расстояние – в 16 тыс. км от эпицентра землетрясения волны цунами двигались со скоростью 650-700 км в час.

6. География волн цунами – карта «Землетрясения» слайд – 13. Работа с картой: где на Земле возможны цунами?

7. Последствия цунами – слайд-шоу (до и после цунами) (слайд 14).

7) Приливы и отливы. УЧИТЕЛЬ:

ребята, я вчера читал о приключениях Капитана Врунгеля, но вот беда – кто - то вырвал пару страниц на самом интересном месте (слайд 15). Как вы думаете, что с ним могло приключиться? Если учащиеся затрудняются ответить, то предлагаю посмотреть еще сайд о приливах и отливах (слайд 16). Если отвечают, что это приливы и отливы, то по видеофрагменту прошу определить причину их вызывающую. (луна) (слайд 17).

Какую пользу можно извлечь человеку от этого природного явления? (слайд 18).

УЧИТЕЛЬ: вернитесь к таблице, заполните её.

Вернёмся ещё раз к таблице (слайд18). Какие виды волн есть в океане? Какие причины их вызывают? (правильное заполнение)

Подведём итог (слайд5).

Сумели мы понаблюдать за кругами на воде? Прав Кузьма Прутков?

III. Домашнее задание.

п. 19, пункт 4, 5 письменно.

Подобрать интересный дополнительный материал по теме урока.

IV. Закрепление знаний.

Сейчас каждый из вас может провести оценку полученных на уроке знаний.

УЧЕНИКИ самостоятельно работают с раздаточным материалом.

УЧИТЕЛЬ оказывает помощь тем, кто затрудняется.

  1. Таблица (заполните таблицу) (слайд 21)
  2. Кроссворд (решите кроссворд) (слайд 22)
  3. Тест (выполните тест) (слайд 23-24)

«За страницами учебника географии»

Проверка выполнения. На экран проецируются правильные ответы. Итог урока. В природе самое прекрасное – то, что ещё не познано. Так что ищите эту красоту и смелее спрашивайте. Хорошо заданный вопрос – это уже половина ответа. Всем спасибо за сотрудничество.