Лекция №5 потенциал и разность потенциалов электростатического поля. Разность потенциалов через напряжение

разность потенциалов, электродвижущая сила, напряжение, со­противление. Зависимость сопротивления от температуры. Сверхпроводимость.

Разность Потенциалов

электрическая электрическое(напряжение) между двумя точками - равна работе электрического поля по перемещению единичного положительного заряда из одной точки поля в другую.

Электродвижущая сила (ЭДС)- физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна: ,где dl - элемент длины контура. ЭДС так же, как и напряжение, измеряется в вольтах.

электрическое напряжениеэто физическая величина численно равная отношению работы, совершенной при переносе заряда между двумя точками электрического поля и величины этого заряда.

Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как где

R - сопротивление;

U - разность электрических потенциалов на концах проводника;

I - сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:

где ρ - удельное сопротивление вещества проводника, L - длина проводника, а S - площадь сечения. Величина, обратная удельному сопротивлению называется удельной проводимостью. Эта величина связана с температурой формулой Нернст-Эйнштейна: где

T - температура проводника;

D - коэффициент диффузии носителей заряда;

Z - количество электрических зарядов носителя;

e - элементарный электрический заряд;

C - Концентрация носителей заряда;

kB - постоянная Больцмана.

Следовательно, сопротивление проводника связано с температурой следующим соотношением:

Сверхпроводи́мость- свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

47.Разветвленные цепи. Правила Кирхгофа и их физическое содержание.

Простейшая разветвленная цепь. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Зако́ны Кирхго́фа (или правила Кирхгофа) - соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон Кирхгофа(Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений

для переменных напряжений

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве, то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Например, для приведённой на рисунке цепи, в соответствии с первым закономвыполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие - отрицательными.

В соответствии со вторым законом, справедливы соотношения:

studfiles.net

3.3. Потенциал. Разность потенциалов.

Сила, с которой система зарядов действует на некоторый не входящий в систему заряд, равна векторной сумме сил, с которыми действует на заряд каждый из зарядов системы в отдельности (принцип суперпозиции).

Здесь каждое слагаемое не зависит от формы пути и, следовательно не зависит от формы пути и сумма.

Итак электростатическое поле потенциально.

Работу сил электростатического поля можно выразить через убыль

потенциальной энергии – разность двух функций состояния:

A12= Eп1– Eп2

Тогда выражение (3.2.2) можно переписать в виде:

Сопоставляя формулу (3.2.2) и (3.2.3) получим выражение для потенциальной

энергии заряда q" в поле зарядаq:

Потенциальную энергию определяют с точностью до постоянной интегрирования. Значение константы в выражении Eпот. выбирают таким образом, чтобы при удалении заряда на бесконечность (т. е. приr = ∞), потенциальная энергия обращалась

Разные пробные заряды q",q"",… будут обладать в одной и той же точке поля разными энергиямиEn", En"" и так далее. Однако отношениеEn/q"пр. будет для всех зарядов одним и тем же.Поэтому ввели скалярную величину, являющуюся

Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.

Подставив в (3.3.1.) значение потенциальной энергии (3.2.3), получим для

Потенциал, как и потенциальная энергия, определяют с точностью до постоянной интегрирования. Договорились считать, что потенциал точки удаленной в бесконечность равен нулю. Поэтому когда говорят «потенциал такой-тоточки» – имеют в виду разность потенциалов между этой точкой и точкой, удаленной в бесконечность. Другое определение потенциала:

φ = Aq∞ или A∞ = qφ,

т.е. потенциал числено равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки в бесконечность

dA = Fl dl = El qdl

(наоборот – такую же работу нужно совершить, чтобы переместить единичный положительный заряд из бесконечности в данную точку поля.

Если поле создается системой зарядов, то, используя принцип суперпозиции, получим:

т.е. потенциал поля, создаваемый системой зарядов равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности. А вот напряженности, как вы помните, складываются при наложении полей –векторно.

Вернемся к работе сил электростатического поля над зарядом q". Выразим работу

где U – разность потенциалов или еще называютнапряжение. Между прочим, хорошая аналогия:

A12 = mgh2 −mgh3 = m(gh2 − gh3)

gh – имеет смысл потенциала гравитационного поля, а m – заряд.

Итак потенциал – скалярная величина, поэтому пользоваться и вычислять φ

проще, чем E . Приборы для измерения разности потенциалов широко распространены. ФормулуA∞=qφ можно использовать для установления единиц потенциала:за единицу φ принимают потенциал в такой точке поля, для перемещения в которую из ∞ единичного положительного заряда необходимо совершить работу равную единице.

Так в СИ – единица потенциала 1В = 1Дж/1Кл, в СГСЭ 1ед.пот. = 300В.

В физике часто используется единица энергии и работы, называемой эВ – это работа, совершенная силами поля над зарядом, равным заряду электрона при прохождении им разности потенциалов 1В, то есть:

1эВ =1,6 10−19 Кл В =1,6 10−19 Дж

3.4. Связь между напряженностью и потенциалом.

Итак электростатическое поле можно описать либо с помощью векторной

величины E , либо с помощью скалярной величиныφ. Очевидно, что между этими величинами должна существовать определенная связь. Найдем ее:

Изобразим перемещение заряда q по произвольному путиl.

Работу, совершенную силами электростатического поля на бесконечно малом отрезке dl можно найти так:

El – проекцияE наdrl ;dl – произвольное направление перемещения заряда.

С другой стороны, как мы показали, эта работа, если она совершена электростатическим полем равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl.

dA = −qdφ; El qdl= −qdφ

Вот отсюда размерность напряженности поля В/м.

Для ориентации dl – (направление перемещения) в пространстве, надо знать проекцииE на оси координат:

где i,j,k – орты осей – единичные вектора.

По определению градиента сумма первых производных от какой-либофункции по координатам есть градиент этой функции, то есть:

gradφ = ∂∂φx ri + ∂∂φy rj + ∂∂φz kr

функции. Знак минус говорит о том, что E направлен в сторону уменьшения потенциала электрического поля.

3.5. Силовые линии и эквипотенциальные поверхности.

Как мы с вами уже знаем, направление силовой линии (линии напряженности) в

каждой точке совпадает с направлением E .Отсюда следует, что напряженность E

равна разности потенциалов на единицу длины силовой линии.

Именно вдоль силовой линии происходит максимальное изменение потенциала.

Поэтому всегда можно определить E между двумя точками, измеряяU между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые

линии – прямые. Поэтому здесь определение E наиболее просто:

При перемещении по этой поверхности на dl, потенциал не изменится:dφ = 0. Следовательно, проекция вектораE наdl равна0, то естьEl = 0. Отсюда

следует, что E в каждой точкенаправлена по нормали к эквипотенциальной поверхности.

Эквипотенциальных поверхностей можно провести сколько угодно много. По

густоте эквипотенциальных поверхностей можно судить о величине E , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине. На одной из лабораторных работах мы с вами будем моделировать электрическое поле и находить эквипотенциальные поверхности и силовые линии от электродов различной формы – очень наглядно вы увидите как могут располагаться эквипотенциальные поверхности.

Формула E = −gradφ – выражает связь потенциала с напряженностью и позволяет по известным значениямφ найти напряженность поля в каждой точке. Можно решить и

обратную задачу, т.е. по известным значениям E в каждой точке поля найти разностьφ между двумя произвольными точками поля. Для этого воспользуемся тем, что работа, совершаемая силами поля над зарядомq при перемещении его из точки 1 в точку 2, может быть, вычислена как:

С другой стороны работу можно представить в виде:

A12= q(φ1−φ2)

φ1−φ2= ∫Edl

Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. Для обхода по замкнутому контуру φ1 = φ2 получим:

т.е. пришли к известной нам теореме о циркуляции вектора напряженности.

Следовательно, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, обладающее этим

свойством, называется потенциальным. Из обращения в нуль циркуляции вектора E ,

следует, что линии E электростатического поля не могут быть замкнутыми: они начинаются на положительных зарядах и на отрицательных зарядах заканчиваются или уходят в бесконечность.

studfiles.net

разность потенциалов в электротехнике и физике

Понятие «потенциал» широко используется в физике для характеристики различных полей и сил. Наиболее известны такие применения:

  • Электромагнитный – характеристика электромагнитного поля;
  • Гравитационный – характеристика полей гравитации;
  • Механический – определение сил;
  • Термодинамический – мера внутренней энергии тел термодинамической системы;
  • Химический;
  • Электродный.

Разность потенциалов

В свою очередь, электромагнитный делится на два понятия:

  • Электростатический (скалярный), как характеристика электрического поля;
  • Векторный, характеризующий магнитное поле.

Напряженность изменяющегося электрического поля находится через электрический потенциал, в то время как статичное поле характеризуется электростатическим.

Разность потенциалов

Разность потенциалов, или напряжение, – одно из основных понятий электротехники. Ее можно определить как работу электрического поля, затраченную на перенос заряда между двумя точками. Тогда на вопрос, что такое потенциал, можно ответить, что это работа по переносу единичного заряда из данной точки в бесконечность.

Как и в случае гравитационных сил, заряд, подобно телу с потенциальной энергией, имеет определенный электрический потенциал при внесении его в электрическое поле. Чем выше напряженность электрического поля, и больше величина заряда, тем выше его электрический потенциал.

Для определения напряжения существует формула:

которая связывает работу А по перемещению заряда q из одной точки в другую.

Проведя преобразование, получим:

То есть чем выше напряжение, тем большую работу электрическим полем (электричеством) надо затратить по переносу зарядов.

Данное определение позволяет понять суть мощности источника питания. Чем выше его напряжение, разность потенциалов между клеммами, тем большее количество работы он может обеспечить.

Разность потенциалов измеряется в вольтах. Для измерения напряжения созданы измерительные приборы, которые именуются вольтметрами. Они основаны на принципах электродинамики. Ток, проходя по проволочной рамке вольтметра, под действием измеряемого напряжения создает электромагнитное поле. Рамка находится между полюсами магнитов.

Взаимодействие полей рамки и магнита заставляет последнюю отклониться на некоторый угол. Большая разность потенциалов создает больший ток, в результате угол отклонения увеличивается. Шкала прибора пропорциональна углу отклонения рамки, то есть разности потенциалов и проградуирована в вольтах.

Вольтметр

В руках современного электрика имеются не только стрелочные, но и цифровые измерительные приборы, которые не только измеряют электрический потенциал в определенной точке схемы, но и другие величины, характеризующие электрическую цепь. Напряжения в точках измеряются по отношению к другим, которым условно присваивают значение нуля. Тогда измеренное значение между нулевым и потенциальным выводами даст искомое напряжение.

Сказанное выше относится к напряжению как разности потенциалов между двумя зарядами. В электротехнике эта разность измеряется на участке цепи при протекании по нему тока. В случае переменного тока, то есть изменяющего во времени амплитуду и полярность, напряжение в цепи изменяется по такому же закону. Это справедливо только при наличии в схеме активных сопротивлений. Реактивные элементы в цепи переменного тока вызывают сдвиг фазы относительно протекающего тока.

Потенциометры

Напряжение источников питания, в особенности автономных, таких как аккумуляторы, химические источники, солнечные и тепловые батареи, является постоянным и не поддается регулировке. Для получения меньших значений используются, в простейшем случае, потенциометрические делители напряжения с использованием трехвыводного переменного резистора (потенциометра). Как работает потенциометр? Переменный резистор представляет собой резистивный элемент с двумя выводами, по которому может перемещаться контактный ползунок с третьим выводом.

Потенциометр-реостат

Переменный резистор может включаться двумя способами:

  • Реостатным;
  • Потенциометром.

В первом случае у переменного резистора используются два вывода: один – основной, другой – с ползунка. Перемещая ползунок по телу резистора, изменяют сопротивление. Включив реостат в цепь электрического тока последовательно с источником напряжения, можно регулировать ток в цепи.

Реостатное включение

Включение потенциометром требует использования всех трех выводов. Основные выводы подключаются параллельно источнику питания, а пониженное напряжение снимается с ползунка и одного из выводов.

Принцип действия потенциометра заключается в следующем. Через резистор, подключенный к источнику питания, проходит ток, который создает падение напряжения между ползунком и крайними выводами. Чем меньше сопротивление между ползунком и выводом, тем меньше напряжение. Данная схема имеет недостаток, она сильно нагружает источник питания, поскольку для корректной и точной регулировки требуется, чтобы сопротивление переменного резистора было в несколько раз меньше сопротивления нагрузки.

Потенциометрическое включение

Обратите внимание! Название «потенциометр» в данном случае не совсем корректно, поскольку из названия следует, что это устройство для измерения, но так как по принципу действия оно схоже с современным переменным резистором, то это название за ним прочно закрепилось, особенно в любительской среде.

Многие понятия в физике схожи и могут служить примером друг другу. Это справедливо и для такого понятия, как потенциал, который может быть как механической величиной, так и электрической. Сам по себе потенциал измерить невозможно, поэтому речь идет о разности, когда один из двух зарядов принимается за точку отсчета – нуль или заземление, как принято в электротехнике.

Видео

elquanta.ru

ПОТЕНЦИАЛ. РАЗНОСТЬ ПОТЕНЦИАЛОВ.

⇐ ПредыдущаяСтр 4 из 6Следующая ⇒

Электростатическое поле обладает энергией. Если в электростатическом поле находится электрический заряд, то поле, действуя на него с некоторой силой, будет его перемещать, совершая работу. Всякая работа связана с изменением какого - то вида энергии. Работу электростатического поля по перемещению заряда принято выражать через величину, называемую разностью потенциалов.

где q - величина перемещаемого заряда,

j1 и j2 - потенциалы начальной и конечной точек пути.

Для краткости в дальнейшем будем обозначать . V - разность потенциалов.

V = A/q. РАЗНОСТЬ ПОТЕНЦИАЛОВ МЕЖДУ ТОЧКАМИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ - ЭТО РАБОТА, КОТОРУЮ СОВЕРШАЮТ ЭЛЕКТРИЧЕСКИЕ СИЛЫ ПРИ ПЕРЕМЕЩЕНИИ МЕЖДУ НИМИ ЗАРЯДА В ОДИН КУЛОН.

[V] = В. 1 вольт - это разность потенциалов между точками, при перемещении между которыми заряда в 1 кулон, электростатические силы совершают работу в 1 джоуль.

Разность потенциалов между телами измеряют электрометром, для чего одно из тел соединяют проводниками с корпусом электрометра, а другое - со стрелкой. В электрических цепях разность потенциалов между точками цепи измеряют вольтметром.

С удалением от заряда электростатическое поле ослабевает. Следовательно, стремится к нулю и энергетическая характеристика поля - потенциал. В физике потенциал бесконечно удалённой точки принимается за ноль. В электротехнике же считают, что нулевым потенциалом обладает поверхность Земли.

Если заряд перемещается из данной точки в бесконечность, то

A = q(j - O) = qj => j= A/q, т.е. ПОТЕНЦИАЛ ТОЧКИ - ЭТО РАБОТА, КОТОРУЮ НАДО СОВЕРШИТЬ ЭЛЕКТРИЧЕСКИМ СИЛАМ, ПЕРЕМЕЩАЯ ЗАРЯД В ОДИН КУЛОН ИЗ ДАННОЙ ТОЧКИ В БЕСКОНЕЧНОСТЬ.

Пусть в однородном электростатическом поле с напряженностью E перемещается положительный заряд q вдоль направления вектора напряженности на расстояние d. Работу поля по перемещению заряда можно найти и через напряженность поля и через разность потенциалов. Очевидно, что при любом способе вычисления работы получается одна и та же ее величина.

A = Fd = Eqd = qV. =>

Эта формула связывает между собой силовую и энергетическую характеристики поля. Кроме того, она дает нам единицу напряженности.

[E] = В/м. 1 В/м - это напряженность такого однородного электростатического поля, потенциал которого изменяется на 1 В при перемещении вдоль направления вектора напряженности на 1 м.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ.

Увеличение разности потенциалов на концах проводника вызывает увеличение силы тока в нем. Ом экспериментально доказал, что сила тока в проводнике прямо пропорциональна разности потенциалов на нем.

При включении разных потребителей в одну и ту же электрическую цепь сила тока в них различна. Значит разные потребители по - разному препятсявуют прохождению по ним электрического тока. ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СПОСОБНОСТЬ ПРОВОДНИКА ПРЕПЯТСТВОВАТЬ ПРОХОЖДЕНИЮ ПО НЕМУ ЭЛЕКТРИЧЕСКОГО ТОКА, НАЗЫВАЕТСЯ ЭЛЕКТРИЧЕСКИМ СОПРОТИВЛЕНИЕМ. Сопротивление данного проводника - это постоянная величина при постоянной температуре. При повышении температуры сопротивление металлов возрастает, жидкостей - падает. [R] = Ом. 1 Ом - это сопротивление такого проводника, по которому течет ток 1 А при разности потенциалов на его концах 1В. Чаще всего используются металлические проводники. Носителями тока в них являются свободные электроны. При движении по проводнику они взаимодействуют с положительными ионами кристаллической решетки, отдавая им часть своей энергии и теряя при этом скорость. Для получения нужного сопротивления используют магазин сопротивлений. Магазин сопротивлений представляет собой набор проволочных спиралей с известными сопротивлениями, которые можно включать в цепь в нужной комбинации.

Ом экспериментально установил, что СИЛА ТОКА В ОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА РАЗНОСТИ ПОТЕНЦИАЛОВ НА КОНЦАХ ЭТОГО УЧАСТКА И ОБРАТНО ПРОПОРЦИОНАЛЬНА СОПРОТИВЛЕНИЮ ЭТОГО УЧАСТКА.

Однородным участком цепи называется участок, на котором нет источников тока. Это закон Ома для однородного участка цепи - основа всех электротехнических расчетов.

Включая проводники разной длины, разного поперечного сечения, сделанные из разных материалов, было установлено: СОПРОТИВЛЕНИЕ ПРОВОДНИКА ПРЯМО ПРОПОРЦИОНАЛЬНО ДЛИНЕ ПРОВОДНИКА И ОБРАТНО ПРОПОРЦИОНАЛЬНО ПЛОЩАДИ ЕГО ПОПЕРЕЧНОГО СЕЧЕНИЯ. СОПРОТИВЛЕНИЕ КУБА С РЕБРОМ В 1 МЕТР, СДЕЛАННОГО ИЗ КАКОГО - ТО ВЕЩЕСТВА, ЕСЛИ ТОК ИДЕТ ПЕРЕПЕНДИКУЛЯРНО ЕГО ПРОТИВОПОЛОЖНЫМ ГРАНЯМ, НАЗЫВАЕТСЯ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ ЭТОГО ВЕЩЕСТВА. [r] = Ом м. Часто используется и несистемная единица удельного сопротивления - сопротивление проводника с площадью поперечного сечения 1 мм2 и длиной 1 м. [r]=Ом мм2/м.

Удельное сопротивление вещества - табличная величина. Сопротивление проводника пропорционально его удельному сопротивлению.

На зависимости сопротивления проводника от его длины основано действие ползунковых и ступенчатых реостатов. Ползунковый реостат представляет собой керамический цилиндр с намотанной на него никелиновой проволокой. Подключение реостата в цепь осуществляется с помощью ползуна, включающего в цепь большую или меньшую длину обмотки. Проволока покрывается слоем окалины, изолирующей витки друг от друга.

А)ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПОТРЕБИТЕЛЕЙ.

Часто в электрическую цепь включается несколько потребителей тока. Это связано с тем, что не рационально иметь у каждого потребителя свой источник тока. Существует два способа включения потебителей: последовательное и параллельное, и их комбинации в виде смешанного соединения.

а) Последовательное соединение потребителей.

При последовательном соединении потебители образуют непрерывную цепочку, в которой потребители соединяются друг за другом. При последовательном соединении нет ответвлений соединительных проводов. Рассмотрим для простоты цепь из двух последовательно соединенных потребителей. Электрический заряд, прошедший через один из потребителей, пройдет и через второй, т.к. в проводнике, соединяющем потребители не может быть исчезновения, возникновения и накапливания зарядов. q=q1=q2. Разделив полученное уравнение на время прохождения тока по цепи, получим связь между током, протекающим по всему соединению, и токами, протекающими по его участкам.

Очевидно, что работа по перемещению единичного положительного заряда по всему соединению слагается из работ по перемещению этого заряда по всем его участкам. Т.е. V=V1+V2 (2).

Общая разность потенциалов на последовательно соединенных потребителях равна сумме разностей потенциалов на потребителях.

Разделим обе части уравнения (2) на силу тока в цепи, получим: U/I=V1/I+V2/I. Т.е. сопротивление всего последовательно соединенного участка равно сумме сопротивлений потебителей его составляющих.

Б) Паралельное соединение потребителей.

Это самый распространенный способ включения потребителей. При этом соединении все потребители включаются на две общие для всех потребителей точки.

При прохождении параллельного соединения, электрический заряд, идущий по цепи, делится на несколько частей, идущих по отдельным потребителям. По закону сохранения заряда q=q1+q2. Разделив данное уравнение на время прохождения заряда, получим связь между общим током, идущим по цепи, и токами, идущими по отдельным потребителям.

В соответствии с определением разности потенциалов V=V1=V2 (2).

По закону Ома для участка цепи заменим силы токов в уравнении (1) на отношение разности потенциалов к сопротивлению. Получим: V/R=V/R1+V/R2. После сокращения: 1/R=1/R1+1/R2,

т.е. величина, обратная сопротивлению параллельного соединения, равна сумме величин, обратных сопротивлениям отдельных его ветвей.


A = - (W2 - W1) = - (j 2 - j 1)q = - D j q,

Разность потенциалов характеризует работу поля по перемещению единичного положительного заряда (1 Кл) из начальной точки в конечную.

рис 4

рис. 5 Единица разности потенциалов

ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.

Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.

Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как?j = 0.

Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.

17. Потенциал электростатического поля точечного заряда.

Тело, которое находится в потенциальном поле сил (а электростатическое поле, как уже известно, является потенциальным), обладает потенциальной энергией, за счет которой силы поля совершают работу. Как известно из классической механики, работа консервативных сил совершается за счет убыли потенциальной энергии. Значит работу сил электростатического поля можно считать как разность потенциальных энергий, которыми обладает точечный электрический заряд Q0 в начальной и конечной точках поля заряда Q:

откуда мы видим, что потенциальная энергия заряда Q0 в поле заряда Q равна

Она, как и в классической механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при перенесении заряда в бесконечность (r→∞) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, который находится в поле заряда Q на расстоянии r от него, равна

Для зарядов одинакового знака Q0Q>0 потенциальная энергия их взаимодействия (в данном случае - отталкивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (в данном случае - притяжения) отрицательна.

Если поле создается системой n точечных электрических зарядов Q1, Q2, ..., Qn, то работа электростатических сил, которая совершается над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, который находится в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов:

(3)

Из формул (2) и (3) следует, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, которая называется потенциалом:

Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Из формул (4) и (2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен

Работа, которую совершают силы электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (1), (4), (5)), может быть выражена как

т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, которая совершается силами поля, при перемещении единичного положительного электрического заряда из точки 1 в точку 2.

Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть выражена как

(7)

Приравняв (6) и (7), придем к формуле для разности потенциалов:

(8)

где интегрирование можно производить вдоль любой линии, которая соединяет начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.

Если перемещать заряд Q0 из произвольной точки за далеко пределы поля, т. е. в бесконечность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (6), A∞=Q0φ, откуда

Значит, потенциал - физическая величина, которая определяется работой по перемещению единичного положительного электрического заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, которую совершают внешние силы (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (4) видно, что единица потенциала - вольт (В): 1 В равен потенциалу такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная ранее единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н м/(Кл м)=1 Дж/(Кл м)=1 В/м.

Из формул (3) и (4) следует, что если поле создается несколькими зарядами, то потенциал данного поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

18. Связь напряженности и потенциала электростатического поля.

Будем искать, каким образом связаны напряженность электростатического поля, которая является его силовой характеристикой, и потенциал, который есть его энергетическая характеристика поля.

Работа по перемещению единичного точечного положительного электрического заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены достаточно близко друг к другу и x2-x1=dx, равна Exdx. Та же работа равна φ1-φ2=dφ. Приравняв обе формулы, запишем

где символ частной производной подчеркивает, что дифференцирование осуществляется только по х. Повторив эти рассуждения для осей у и z, найдем вектор Е:

где i, j, k - единичные векторы координатных осей х, у, z.

Из определения градиента следует, что

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус говорит о том, что вектор напряженности Е поля направлен в сторону уменьшения потенциала.

19. Потенциал электростатического поля системы зарядов. Принцип суперпозиции. Потенциал поля точечного диполя.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2, ... , n). Энергия взаимодействия всех n зарядов определится соотношением

Во многих случаях для того, чтобы правильно уяснить суть вопроса, касающегося электротехники, необходимо точно знать, что такое разность потенциалов.

Определение разности потенциалов

Общее понятие состоит в электрическом напряжении, образованном между двумя точками, и представляющем собой работу электрического поля, которую необходимо совершить для перемещения из одной точки в другую положительного единичного заряда.

Таким образом, в равномерном и бесконечном электрическом поле положительный заряд под воздействием этого поля будет перемещен на бесконечное расстояние в направлении, одинаковым с электрическим полем. Потенциал конкретной точки поля представляет собой работу, производимую электрическим полем при перемещении из этой точки положительного заряда в точку, удаленную бесконечно. При перемещении заряда в обратном направлении, внешними силами производится работа, направленная на преодоление электрической силы поля.

Разность потенциалов на практике

Разность потенциалов, существующая в двух различных точках поля, получила понятие напряжения, измеряемого в вольтах. В однородном электрическом поле очень хорошо просматривается зависимость между электрическим напряжением и напряженностью электрического поля.

Точки с одинаковым потенциалом, расположенные вокруг заряженной поверхности проводника, полностью зависят от формы этой поверхности. При этом разность потенциалов для отдельных точек, лежащих на одной и той же поверхности имеет нулевое значение. Такая поверхность , где каждая точка обладает одинаковым потенциалом носит название эквипотенциальной поверхности.

Когда происходит приближение к заряженному телу, происходит быстрое увеличение потенциала, а расположение эквипотенциальных поверхностей становится более тесным относительно друг друга. При удалении от заряженных тел, расположение эквипотенциальных поверхностей становится более редким. Расположение электрических силовых линий всегда перпендикулярно с эквипотенциальной поверхностью в каждой точке.

В заряженном проводнике все точки на его поверхности обладают одинаковым потенциалом. То же значение имеется и во внутренних точках проводника.

Проводники, имеющие различные потенциалы, соединенные между собой с помощью металлической проволоки. На ее концах появляется напряжение или разность потенциалов, поэтому вдоль всей проволоки наблюдается действие электрического поля. Свободные электроны начинают двигаться в направлении увеличения потенциала, что вызывает появление электрического тока.

Падение потенциала вдоль проводника

Разность потенциалов или электрическое напряжение это отношение той работы, которую совершают силы электрического поля на перемещение заряда из одной точки поля в другую к величине этого заряда. При этом совершенно неважно, по какому пути будет перемещаться заряд. Важно лишь начало и конец пути. Траектория при этом не имеет никакого значения. Так как электрическое поле является потенциальным.

Для упрощения понимания приведем аналогию с гравитационным полем. Представим себе лестницу, груз лежит на последней ступени при этом он обладает потенциальной энергией. То есть если его уронить с этой высоты, скажем на ногу, то предположительно будет больно. Если бы груз лежал на первой ступени, было бы не так больно, так как он обладал бы значительно меньшей потенциальной энергией.

Теперь представим, что груз лежал на первой ступени и вдруг появился злодей. Он взял этот груз и долго ходил с ним по городу, потом подумал, а зачем он мне. И в итоге принес назад, но положил уже на последнюю ступень лестницы. Потенциальная энергия этого груза изменилась пропорционально высоте, а не как не тому расстоянию, которое прошёл злодей с этим грузом. И совершенно все равно, куда он успел его сводить в ресторан там или в кино, а может и в темную подворотню.

Если вы еще не поняли все это захватывающее повествование было для того чтобы пояснить тот факт что траектория перемещения заряда не имеет значение.

Представим поле, создаваемое двумя зарядами одинаковыми по величине и противоположными по знаку. Поле является электростатическим, так как заряды неподвижны. В этом поле перемещается еще один заряд из точки 1 в точку 2. При этом заряд может совершать перемещение по произвольной траектории.

Рисунок 1 — заряд в электростатическом поле

Для любого поля величина разности потенциалов для всех рассматриваемых зарядов будет постоянной. Так как величина силы действующей со стороны поля на этот заряд пропорциональна заряду. Работа, затрачиваемая на перемещение заряда, имеет вид

Формула 1 — Работа по перемещению заряда из одной точки поля в другую

Чтобы определить напряжение или разность потенциалов необходимо знать величины потенциалов. При этом знак напряжения будет определяться различными факторами. Например, если в поле будет перемещаться отрицательный заряд или работа по перемещению заряда будет отрицательна. Работа может быть отрицательна в том случае, если заряд будет перемещаться из точки поля с меньшей энергией в точку с большей. Это видно из формулы для работы.

Формула 2 — разность потенциалов.

Разность потенциалов не имеет направления как напряжённость электрического поля или индукция магнитного. Потому что она является скалярной величиной. Единицей измерения в международной системе единиц СИ для разности потенциалов принят единица в один вольт.

Один вольт это разность потенциалов между двумя точками при условии, что заряд величиной в один кулон перемещается между этими точками, на что поле затрачивает работу в один джоуль.

Из определения следует, что разность потенциалов определяется между двумя точками. В каждой из которых значение потенциала известно. Иногда можно встретить вычисление напряжения из одного значения потенциала при этом подразумевается, что значение второго потенциала равно нулю.

Можно заметить некоторую особенность разности потенциалов. Она заключается в том, что на эквипотенциальной поверхности, в каких бы точках не производилось бы измерение, разность потенциалов будет равна нулю. Казалось бы, точки берутся в разных участках поля, но напряжения между ними нет. Это происходит по тому, что на эквипотенциальной поверхности значение потенциала постоянно и не меняется при движении вдоль нее.

Формулу можно использовать для определения разности потенциалов между двумя точками электрического поля, если напряженность поля в области между этими точками известна. Обращая эту формулу мы можем выразить напряженность электрического поля через его потенциал, т. е., зная V , мы сможем определить Е .
Посмотрим, как это делается.
Уравнение можно переписать в дифференциальной форме:

dV = -E·dl = -E l dl ,

где dV - бесконечно малая разность потенциалов между точками на расстоянии dl друг от друга, а E l - составляющая напряженности электрического поля в направлении этого бесконечно малого перемещения dl .
Тогда:

Таким образом, составляющая напряженности электрического поля по любому направлению равна градиенту потенциала в этом направлении, взятому с обратным знаком. Градиентом величины V называется ее производная по определенному направлению dV/dl . Если направление не указывается, то градиент соответствует направлению наиболее быстрого изменения V ; это соответствует направлению вектора Е в данной точке, поскольку именно в таком направлении составляющая вектора Е совпадает с полной величиной напряженности поля:

Если расписать составляющие вектора Е по координатам х, у, z и в качестве l взять направления вдоль осей х у, z , то уравнение (24.8) можно записать в виде:

Здесь dV/dx - частная производная V по направлению х при условии, что у и z фиксированы.

В последнем примере мы вычислили напряженность электрического поля Е диполя в произвольной точке пространства. Складывая векторы напряженностей, создаваемых каждым зарядом в отдельности, получить этот результат было бы гораздо сложнее. Вообще говоря, для многих распределений зарядов гораздо проще рассчитать потенциал, а затем по формуле (24.9) - напряженность электрического поля Е , чем вычислять по закону Кулона по отдельности Е для каждого заряда: скалярные величины складывать намного проще, чем векторы.

Электростатическая потенциальная энергия

Предположим, что точечный заряд q перемещают в пространстве из точки а в точку b , электрические потенциалы в которых, обусловленные другими зарядами, равны соответственно V a и V b . Изменение электростатической потенциальной энергии заряда q в поле других зарядов составляет:

ΔU = U b - U a = q(V b - V a) = qV ba

Пусть теперь имеется система нескольких точечных зарядов. Чему равна электростатическая потенциальная энергия системы?
Удобнее всего выбрать за нуль потенциальную энергию зарядов на очень больших (в идеале бесконечно больших) расстояниях друг от друга. Потенциальная энергия уединенного точечного заряда Q 1 равна нулю, поскольку в отсутствие других зарядов на него не действует никакая сила. Если к нему поднести второй точечный заряд, Q 2 , потенциал в точке, где находится второй заряд, будет равен:

Здесь r 1 2 - расстояние между зарядами. Потенциальная энергия двух зарядов равна:

Она характеризует работу, необходимую для перемещения заряда Q 2 из бесконечности (V = 0) на расстояние r 1 2 до заряда Q i (или со знаком минус работу, необходимую для разнесения зарядов на бесконечно большое расстояние).

Если система состоит из трех зарядов, то ее полная потенциальная энергия будет равна работе по перемещению всех трех зарядов из бесконечности в место их расположения. Работа по сближению зарядов Q 2 и Q 1 определяется выражением (24.10);
чтобы перенести заряд Q 3 из бесконечности в точку на расстоянии r 1 3 от Q 1 и на расстоянии r 2 3 от Q 2 , требуется совершить работу:

В этом случае потенциальная энергия системы трех точечных зарядов будет равна:

Для системы четырех зарядов выражение для потенциальной энергии будет содержать шесть таких членов и т.п. (При составлении подобных сумм необходимо следить за тем, чтобы не учитывать одну и ту же пару дважды). Часто нас интересует не полная электростатическая потенциальная энергия, а лишь часть ее. Например, может возникнуть необходимость найти потенциальную энергию одного диполя в присутствии другого диполя. Во взаимодействии участвуют четыре заряда: Q 1 и -Q 1 первого диполя и Q 2 и -Q 2 второго диполя.
Потенциальная энергия одного диполя и в присутствии другого (иногда ее называют энергией взаимодействия) представляет собой работу по сближению диполей с бесконечно большого расстояния. В этом случае нас не интересует взаимная потенциальная энергия зарядов Q 1 и -Q 1 или Q 2 и -Q 2 ; выражение для потенциальной энергии двух диполей будет содержать лишь четыре члена, соответствующие энергиям взаимодействия между зарядами: Q 1 и Q 2 ; Q 1 и -Q 2 ; -Q 1 и Q 2 ; -Q 1 и -Q 2 .

Заключение

Электрический потенциал в любой точке пространства определяется как электростатическая потенциальная энергия единицы заряда. Разность потенциалов между двумя точками определяется взятой с обратным знаком работой, которая совершается полем при перемещении единичного электрического заряда между этими точками. Разность потенциалов измеряется в вольтах (1 В = 1 Дж/Кл) и иногда называется напряжением. Изменение потенциальной энергии заряда q при прохождении им разности потенциалов V bа равно ΔU = qV ba .
V bа между точками b и a в однородном электрическом поле напряженностью Е определяется формулой V = - Ed , где d - расстояние вдоль силовой линии поля между этими точками.
В неоднородном электрическом поле Е соответствующее выражение имеет вид .
Таким образом, зная Е , всегда можно определить V bа . Если значение V известно, то составляющие напряженности поля Е можно найти, обращая приведенное соотношение:

Е x = -dV/dх, Е y = -dV/dу, E z = -dV/dz .

Замечания и предложения принимаются и приветствуются!