Слово «спирт» знакомо всем, но далеко не все знают, что на латыни оно происходит от слова «Дух» – «Spiritus». Такое необычное и немного пафосное название дали спирту его первооткрыватели, алхимик Жа-бир и александриец Зосим де Панополис, работающие при дворе египетского халифа. Именно им впервые удалось выделить спирт из вина при помощи дистилляционного аппарата. Эти ученые древности свято верили, что им удалось получить сам дух вина. С тех пор многие ученые (сперва алхимики, а потом и просто химики) разных исторических эпох занимались изучением спирта и его физических и химических свойств. Так что в наше время спирты занимают видное и важное место в органической химии, и о них наша сегодняшняя статья.

Спирты являются важными органическими и кислородосодержащими соединениями, которые содержат гидроксильную группу OH. Также все спирты делятся на одноатомные и многоатомные. Значение спиртов в химии, да и не только в ней просто таки огромно, спирты активно применяются в химической, косметической и пищевой промышленности (да-да, и для создания алкогольных напитков в том числе, но и далеко не только для них).

История открытия спирта

История спирта уходят корнями в глубокую древность, ведь согласно археологическим находкам уже 5000 лет тому назад люди умели делать алкогольные напитки: вино и пиво. Делать то умели, но не до конца понимали, какой же такой волшебный элемент имеется в этих напитках, который делает их хмельными. Тем не менее, пытливые умы ученых прошлого не раз пытались выделить из вина этот волшебный компонент, отвечающий за его алкогольность (или крепость, как мы говорим сейчас).

И вскоре обнаружилось, что спирт можно выделить при помощи процесса дистилляции жидкости. Дистилляция спирта это такой химический процесс в ходе, которого летучие компоненты (пары) , а из перебродившей смеси и получается спирт. К слову сам процесс дистилляции впервые был описан великим ученым и натурфилософом Аристотелем. На практике же получить спирт при помощи дистилляции удалось алхимикам Жа-биру и Зосим де Панополису, именно они, как мы уже писали вначале, и дали спирту его название – «spiritus vini» (дух вина), который со временем стал просто спиртом.

Алхимики более поздних времен усовершенствовали процесс дистилляции и получения спирта, например французский врач и алхимик Арно де Вильгерр в 1334 году разработал удобную технологию получения винного спирта. А уже с 1360 года его наработки переняли итальянские и французские монастыри, которые начали активно производить спирт, называемый ими «Aqua vita» – «живая вода».

В 1386 году «живая вода» впервые попала в Россию (точнее Московию, как тогда называли это государство). Привезенный генуэзским посольством в качестве презента царскому двору спирт очень понравился тамошним боярам (впрочем, и не только боярам). А «живая вода» впоследствии стала основой всем известного алкогольного напитка (употреблять который мы вам, однако, решительно не рекомендуем).

Но вернемся к химии.

Классификация спиртов

На самом деле существует множество разных видов спиртов, которых химики делят в зависимости от:


Номенклатура спиртов

Номенклатура одноатомных спиртов, как и многоатомных, зависит от названия окружающих радикалов и строения их молекул. Например:


Физические свойства спиртов

Низкомолекулярный спирт – это обычно бесцветная жидкость, имеющая при этом резкий и характерный запах. Температура кипения спирта выше, нежели у других органических соединений. Это обусловлено тем, что в молекулах спиртов имеется особый вид взаимодействий – связи. Вот как они выглядят.

Химические свойства спиртов

По причине своего строения спирты проявляют амфотерные свойства: основные и кислотные, далее детально на них остановимся:

  • Кислотные свойства спиртов проявляются в способности отщепления протона гидроксигруппы. По мере роста длины углеродной цепи, объема ее радикала, а также степени разветвления и наличия в молекуле доноров, кислотность уменьшается.
  • Основные свойства спиртов являются обратными к их кислотным свойствам, так как они выражаются в их способности, наоборот, присоединить протон.

Алкоголи и гликоли имеют особенность вступать в химические реакции замещения, отщепления и окисления. Опишем их детальнее:

Получение спиртов

Одноатомные спирты можно получить из алкенов, сложных эфиров, оксосоединений, карбоновых кислот и галогенопроизводных.

А вот спирт этанол можно получить при помощи брожения сахаристых веществ, будет иметь такой вид.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

ГЛАВА I. СВОЙСТВА СПИРТОВ.

1.1 ФИЗИЧЕСКИЕ СВОЙСТВА СПИРТОВ.

1.2 ХИМИЧЕСКИЕ СВОЙСТВА СПИРТОВ.

1.2.1 Взаимодействие спиртов с щелочными металлами.

1.2.2 Замещение гидроксильной группы спирта галогеном.

1.2.3 Дегидратация спиртов (отщепление воды).

1.2.4 Образование сложных эфиров спиртов.

1.2.5 Дегидрогенизация спиртов и окисление.

ГЛАВА 2. МЕТОДЫ ПОЛУЧЕНИЯ СПИРТОВ.

2.1 ПРОИЗВОДСТВО ЭТИЛОВОГО СПИРТА.

2.2 ПРОЦЕСС ПОЛУЧЕНИЯ МЕТИЛОВОГО СПИРТА.

2.3 МЕТОДЫ ПОЛУЧЕНИЯ ДРУГИХ СПИРТОВ.

ГЛАВА 3. ПРИМЕНЕНИЕ СПИРТОВ.

ЗАКЛЮЧЕНИЕ.

СПИСОК ЛИТЕРАТУРЫ

Введение

Спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединенных с углеводородным радикалом.

Они могут рассматриваться поэтому как производные углеводородов, в молекулах которых один или несколько атомов водорода заменены на гидроксильные группы.

В зависимости от числа гидроксильных групп спирты подразделяются на одно-, двух-, трехатомные и т. д. Двухатомные спирты часто называют гликолями по названию простейшего представителя этой группы - этиленгликоля (или просто гликоля). Спирты, содержащие большее количество гидроксильных групп, обычно объединяют общим названием многоатомные спирты.

По положению гидроксильной группы спирты делятся на: первичные - с гидроксильной группой у конечного звена цепи углеродных атомов, у которого, кроме того, имеются два водородных атома (R-CH2-OH); вторичные, в которых гидроксил присоединен к углеродному атому, соединенному, кроме ОН-группы, с одним водородным атомом , и третичные, у которых гидроксил соединен с углеродом, не содержащим водородных атомов [(R)С-ОН] (R-радикал: СН3,С2Н5 и т.д.)

В зависимости от характера углеводородного радикала спирты делятся на алифатические, алициклические и ароматические. В отличие от галогенпроизводных, у ароматических спиртов гидроксильная группа не связана непосредственно с атомом углерода ароматического кольца .

По заместительной номенклатуре названия спиртов составляют из названия родоначального углеводорода с прибавлением суффикса -ол. Если в молекуле несколько гидроксильных групп, то используют умножительную приставку: ди- (этандиол-1,2), три- (пропантриол-1,2,3) и т. д. Нумерацию главной цепи начинают с того конца, ближе к которому находится гидроксильная группа. По радикально-функциональной номенклатуре название производят от названия углеводородного радикала, связанного с гидроксильной группой, с прибавлением слова спирт.

Структурная изомерия спиртов определяется изомерией углеродного скелета и изомерией положения гидроксильной группы.

Рассмотрим изомерию на примере бутиловых спиртов.

В зависимости от строения углеродного скелета, изомерами будут два спирта - производные бутана и изобутана:

СН3 - СН2 - СН2 -СН2 - ОН СН3 - СН - СН2 - ОН

В зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще два изомерных спирта:

СН3 - СН - СН2 -СН3 Н3С - С - СН3

Число структурных изомеров в гомологическом ряду спиртов быстро возрастает. Например, на основе бутана существует 4 изомера, пентана - 8, а декана - уже 567 .

Глава I. Свойства спиртов

1.1 Физические свойства спиртов

Физические свойства спиртов существенно зависят от строения углеводородного радикала и положения гидроксильной группы. Первые представители гомологического ряда спиртов - жидкости, высшие спирты - твердые вещества.

Метанол, этанол и пропанол смешиваются с водой во всех соотношениях. С ростом молекулярной массы растворимость спиртов в воде резко падает, так, начиная с гексилового, одноатомные спирты практически нерастворимы. Высшие спирты не растворимы в воде. Растворимость спиртов с разветвленной структурой выше, чем у спиртов с имеющих неразветвленное, нормальное строение. Низшие спирты обладают характерным алкогольным запахом, запах средних гомологов сильный и часто неприятный. Высшие спирты практически не имеют запаха. Третичные спирты обладают особым характерным запахом плесени.

Низшие гликоли - вязкие бесцветные жидкости, не имеющие запаха; хорошо растворимы в воде и этаноле, обладают сладким вкусом.

С введением в молекулу второй гидроксильной группы происходит повышение относительной плотности и температуры кипения спиртов. Например, плотность этиленгликоля при 0С - 1,13, а этилового спирта - 0,81.

Спирты обладают аномально высокими температурами кипения по сравнению со многими классами органических соединений и чем можно ожидать на основании их молекулярных весов (Табл.1).

Таблица 1.

Физические свойства спиртов.

Отдельные представители

Физические свойства

название

структурная формула

Одноатомные

Метанол (метиловый)

Этанол (этиловый)

Пропанол-1

СН3СН2СН2ОН

Пропанол-2

СН3СН(ОН)СН3

Бутанол-1

СН3(СН2)2СН2ОН

2-Метилпропанол-1

(СН3)2СНСН2ОН

Бутанол-2

СН3СН(ОН)СН2СН3

Двухатомные

Этандиол-1,2 (этиленгликоль)

НОСН2СН2ОН

Трехатомные

Пропантриол-1,2,3 (глицерин)

НОСН2СН(ОН)СН2ОН

Это объясняется особенностями строения спиртов - с образованием межмолекулярных водородных связей по схеме:

Размещено на http://www.allbest.ru/

Спирты разветвленной структуры кипят ниже, чем нормальные спирты того же молекулярного веса; первичные спирты кипят выше вторичных и третичных их изомеров .

1.2 Химические свойства спиртов

Как у всех кислородосодержащих соединений, химические свойства спиртов определяются, в первую очередь, функциональными группами и, в известной степени, строением радикала.

Характерной особенностью гидроксильной группы спиртов является подвижность атома водорода, что объясняется электронным строением гидроксильной группы. Отсюда способность спиртов к некоторым реакциям замещения, например, щелочными металлами. С другой стороны, имеет значение и характер связи углерода с кислородом. Вследствие большой электроотрицательности кислорода по сравнению с углеродом, связь углерод-кислород также в некоторой степени поляризована с частичным положительным зарядом у атома углерода и отрицательным - у кислорода. Однако, эта поляризация не приводит к диссоциации на ионы, спирты не являются электролитами, а представляют собой нейтральные соединения, не изменяющие окраску индикаторов, но они имеют определенный электрический момент диполя .

Спирты являются амфотерными соединениями, то есть могут проявлять как свойства кислот, так и свойства оснований.

1.2.1 Взаимодействие спиртов с щелочными металлами
Спирты как кислоты взаимодействуют с активными металлами (K, Na, Ca). При замещении атома водорода гидроксильной группы металлом образуются соединения, называемые алкоголятами (от названия спиртов - алкоголи):
2R - OH + 2Na 2R - ONa + H2

Названия алкоголятов производят от названий соответствующих спиртов, например,

2С2Н5ОН + 2Na 2С2Н5 - ONa + H2

Низшие спирты бурно реагируют с натрием. С ослаблением кислотных свойств у средних гомологов реакция замедляется. Высшие спирты образуют алкоголяты лишь при нагревании .

Алкоголяты легко гидролизуются водой:

С2Н5 - ONa + HОН С2Н5 - ОН + NaОН

В отличие от спиртов, алкоголяты - твердые вещества, хорошо растворимые в соответствующих спиртах .

Известны алкоголяты и других металлов, кроме щелочных, но они образуются косвенными путями. Так, щелочноземельные металлы непосредственно со спиртами не реагируют. Но алкоголяты щелочноземельных металлов, а также Mg, Zn, Cd, Al и других металлов, образующих реакционноспособные металлоорганические соединения, можно получить действием спирта на такие металлоорганические соединения.

1.2.2 Замещение гидроксильной группы спирта галогеном

Гидроксильная группа спиртов может быть замещена на галоген действием на них галогенводородных кислот, галогенных соединений фосфора или тионилхлорида, например,

R - OH + HCl RCl + HOH

Наиболее удобно для замещения гидроксильной группы использовать тионилхлорид; применение галогенных соединений фосфора осложняется образованием побочных продуктов. Образующаяся при такой реакции вода разлагает галогеналкил на спирт и галогенводород, поэтому реакция обратима. Для ее успешного проведения необходимо, чтобы исходные продукты содержали минимальное количество воды. В качестве водоотнимающих средств применяют хлорид цинка, хлорид кальция, серную кислоту.

Данная реакция протекает с расщеплением ковалентной связи, что можно представить равенством

R: OH + H: Cl R - Cl + H2O

Скорость этой реакции возрастает от первичных к третичным спиртам, причем она также зависит от галогена: наибольшей она является для иода, наименьшей - для хлора.

1.2.3 Дегидратация спиртов (отщепление воды)
В зависимости от условий дегидратации образуются олефины или простые эфиры.
Олефины (этиленовые углеводороды) образуются при нагревании спирта (кроме метилового) с избытком концентрированной серной кислоты, а также при пропускании паров спирта над окисью алюминия при 350 - 450. При этом происходит внутримолекулярное отщепление воды, то есть Н+ и ОН - отнимаются от одной и той же молекулы спирта, например:
СН2 - СН2 СН2 = СН2 + Н2О или

СН3-СН2-СН2ОН СН3-СН=СН2+Н2О

Простые эфиры образуются при осторожном нагревании избытка спирта с концентрированной серной кислотой. В этом случае происходит межмолекулярное отщепление воды, то есть Н+ и ОН - отнимаются от гидроксильных групп разных молекул спирта, как это показано на схеме:

R - OH + HO - R R - O - R + H2O

2С2Н5ОН С2Н5-О-С2Н5+Н2О

Первичные спирты дегидратируются труднее вторичных, легче отнимается молекула воды от третичных спиртов .

1.2.4 Образование сложных эфиров спиртов

При действии кислородных минеральных и органических кислот на спирты образуются сложные эфиры, например,

С2Н5ОН+СН3СООН С2Н5СООСН3+Н2О

ROH + SO2 SO2+H2O

  • Такого рода взаимодействие спирта с кислотами называется реакцией этерификации. Скорость этерификации зависит от силы кислоты и природы спирта: с увеличением силы кислоты она возрастает, первичные спирты реагируют быстрее вторичных, вторичные спирты - быстрее третичных. Этерификация спиртов карбоновыми кислотами ускоряется при добавлении сильных минеральных кислот. реакция обратима, обратная реакция называется гидролизом. Сложные эфиры получаются также при действии на спирты галогенангидридов и ангидридов кислот.
1.2.5 Дегидрогенизация спиртов и окисление

Образование разных продуктов в реакциях дегидрогенизации и окисления является важнейшим свойством, позволяющим отличить первичные, вторичные и третичные спирты.

При пропускании паров первичного или вторичного, но не третичного спирта над металлической медью при повышенной температуре происходит выделение двух атомов водорода и первичный спирт превращается в альдегид, вторичные спирты дают в этих условиях кетоны.

СН3СН2ОН СН3СНО + Н2 ; СН3СН(ОН)СН3 СН3СОСН3 + Н2;

третичные спирты в тех же условиях не дегидрируются.

Такое же различие проявляют первичные и вторичные спирты при окислении, которое можно проводить "мокрым" путем, например, действием хромовой кислоты, или каталитически, причем катализатором окисления

служит также металлическая медь, а окислителем кислород воздуха:

RCH2OH + O R-COH + H2O

CHOH + O C=O + H2O

Глава 2. Методы получения спиртов

В свободном виде многие спирты содержатся в летучих эфирных маслах растений и вместе с тем с другими соединениями обусловливают запах многих цветочных эссенций, например, розового масла и др. Кроме того, спирты находятся в виде сложных эфиров во многих природных соединениях - в воске, эфирных и жирных маслах, в животных жирах. Наиболее распространенным и из спиртов, находящихся в природных продуктах, является глицерин - обязательная составная часть всех жиров, которые до сих пор служат главным источником его получения. К числу весьма распространенных в природе соединений относятся многоатомные альдегидо- и кетоноспирты, объединяемые под общим названием сахаров. Синтез важнейших в техническом отношении спиртов рассмотрен ниже .

2.1 Производство этилового спирта

Процессы гидратации - это взаимодействие с водой. Присоединение воды в ходе проведения технологических процессов может вестись двумя методами:

1. Прямой метод гидратации осуществляется при непосредственном взаимодействии воды и сырья, используемого для производства. Этот процесс ведется в присутствии катализаторов. Чем больше атомов углерода находится в цепи, тем быстрее идет процесс гидратации.

2. Косвенный метод гидратации осуществляется при помощи образования промежуточных продуктов реакции в присутствии серной кислоты. А затем реакции гидролиза подвергаются создаваемые промежуточные продукты.

При современном производстве этилового спирта используют метод прямой гидратации этилена:

СН2=СН2 + Н2О С2Н5ОН - Q

Получение ведется в контактных аппаратах полочного типа. Спирт отделяется из побочных продуктов реакции в сепараторе, а для окончательной очистки используется ректификация .

Реакция начинается с атаки ионом водорода того углеродного атома, который связан с большим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод. После этого к соседнему углероду присоединяется вода с выбросом Н+. Этим методом в промышленном масштабе готовят этиловый, втор-пропиловый и трет-бутиловый спирты.

Для получения этилового спирта издавна пользуются различными сахаристыми веществами, например, виноградным сахаром, или глюкозой, которая путем "брожения", вызываемого действием ферментов (энзимов), вырабатываемых дрожжевыми грибками, превращается в этиловый спирт.

С6Н12О6 2С2Н5ОН + 2СО2

Глюкоза в свободном виде содержится, например, в виноградном соке, при брожении которого получается виноградное вино с содержанием спирта от 8 до 16%.

Исходным продуктом для получения спирта может служить полисахарид крахмал, содержащийся, например, в клубнях картофеля, зернах ржи, пшеницы, кукурузы. Для превращения в сахаристые вещества (глюкозу) крахмал предварительно подвергают гидролизу. Для этого муку или измельченный картофель заваривают горячей водой и по охлаждении добавляют солод - проросшие, а затем подсушенные и растертые с водой зерна ячменя. В солоде содержится диастаз (сложная смесь ферментов), действующий на процесс осахаривания крахмала каталитически. По оканчании осахаривания к полученной жидкости прибавляют дрожжи, под действием фермента которых образуется спирт. Его отгоняют, а затем очищают повторной перегонкой.

В настоящее время осахариванию подвергают также другой полисахарид - целлюлозу (клетчатку), образующую главную массу древесины. Для этого целлюлозу подвергают гидролизу в присутствии кислот (например, древесные опилки при 150 -170С обрабатывают 0,1 - 5% серной кислотой под давлением 0,7 - 1,5 МПа). Полученный таким образом продукт также содержит глюкозу и сбраживается на спирт при помощи дрожжей. Из 5500 т сухих опилок (отходы лесопильного завода средней производительности за год) можно получить 790 т спирта (считая на 100%-ный). Это дает возможность сэкономить около 3000 т зерна или 10000 т картофеля .

2.2 Процесс получения метилового спирта

Важнейшей реакцией этого типа является взаимодействие окиси углерода и водорода при 400С под давлением 20 - 30 МПа в присутствии смешанного катализатора, состоящего из окиси меди, хрома, алюминия и др.

СО + 2Н2 СН3ОН - Q

Получение метилового спирта ведется в контактных аппаратах полочного типа. Наряду с образованием метилового спирта идут процессы образования побочных продуктов реакции, поэтому после проведения процесса продукты реакции необходимо разделить. Для выделения метанола используется холодильник - конденсатор, а затем доочистку спирта осуществляют, используя многократную ректификацию .

Практически весь метанол (СН3ОН) получают в промышленности этим способом; кроме него, при других условиях, так могут быть получены смеси более сложных спиртов. Метиловый спирт образуется и при сухой перегонке дерева, поэтому его называют также древесным спиртом.

2.3 Методы получения других спиртов

Известны и другие способы синтетического получения спиртов:

гидролизом галогенпроизводных при нагревании с водой или водным раствором щелочи

СН3 - СНВr - CH3 + H2O CH3 - CH(OH) - CH3 + HBr

получают первичные и вторичные спирты, третичные галогеналкилы образуют при этой реакции олефины;

гидролизом сложных эфиров, главным образом, природных (жиры,воски);

окислением насыщенных углеводородов при 100- 300 и давлении 15 - 50 атм.

Олефины окислением превращают в циклические окиси, которые при гидратации дают гликоли, так в промышленности получают этиленгликоль:

СН2 = СН2 СН2 - СН2 НОСН2 - СН2ОН;

Существуют способы, имеющие главным образом лабораторное применение; некоторые из них практикуются в тонком промышленном синтезе, например, при производстве небольших количеств ценных спиртов, используемых в парфюмерии. К числу таких методов относится альдольная конденсация или реакция Гриньяра. Так, по методу химика П.П.Шорыгина получают из окиси этилена и фенилмагний-галогенида фенилэтиловый спирт - ценное душистое вещество с запахом розы .

Глава 3. Применение спиртов

Ввиду разнообразия свойств спиртов различной структуры область их применения очень обширна. Спирты - древесный, винный и сивушные масла - долгое время служили главным сырьевым источником для производства ациклических (жирных) соединений. В настоящее время большую часть органического сырья поставляет нефтехимическая промышленность, в частности в виде олефинов и парафиновых углеводородов. Простейшие спирты (метиловый, этиловый, пропиловый, бутиловый) в больших количествах расходуются как таковые, а также в форме эфиров уксусной кислоты, как растворители в лакокрасочном производстве, а высшие спирты, начиная с бутилового, - в виде эфиров фталевой, себациновой и других двухосновных кислот - как пластификаторы.

Метанол служит сырьем для получения формальдегида, из которого готовятся синтетические смолы, используемые в огромных количествах в производстве феноло-формальдегидных пластических материалов, метанол служит полупродуктом для производства метилацетата, метил- и диметиланилина, метиламинов и многих красителей, фармацевтических препаратов, душистых и др. веществ. Метанол - хороший растворитель, им широко пользуются в лакокрасочной промышленности. В нефтеперерабатывающей промышленности его применяют в качестве растворителя щелочи при очистке бензинов, а также при выделении толуола путем азеотропной ректификации.

Этанол находит применение в составе этиловой жидкости как добавка к топливам для карбюраторных двигателей внутреннего сгорания. Этиловый спирт в больших количествах потребляется в производстве дивинила, для производства одного из важнейших инсектицидов ДДТ. В качестве растворителя широко применяется при производстве фармацевтических, душистых, красящих и других веществ. Этиловый спирт - хорошее антисептическое средство.

Этиленгликоль с успехом применяют для приготовления антифриза. Он гигроскопичен, поэтому применяется при изготовлении печатных красок (текстильных, типографских и штемпельных). Азотнокислый эфир этиленгликоля - сильное взрывчатое вещество, заменяющее в известной мере нитроглицерин.

Диэтиленгликоль - применяется как растворитель и для заполнения тормозных гидравлических приспособлений; в текстильной промышленности его используют при отделке и крашении тканей.

Глицерин - применяется в больших количествах в химической, пищевой (для изготовления кондитерских изделий, ликеров, прохладительных напитков и др.), текстильной и полиграфической промышленностях (добавляется в печатную краску для предохранения от высыхания), а также в других отраслях производства - производстве пластических масс и лаков, взрывчатых веществ и порохов, косметических и лекарственных препаратов, а также в качестве антифриза.

Большое практическое значение имеет реакция каталитической дегидрогенизации и дегидратации винного спирта, разработанная русским химиком С.В. Лебедевым и протекающая по схеме:

2С2Н5ОН 2Н2О+Н2+С4Н6;

получающийся таким образом бутадиен СН2=СН-СН=СН2-1,3 является сырьем для производства синтетического каучука.

Некоторые спирты ароматического ряда, имеющие длинные боковые цепи в форме их сульфированных производных, служат моющими и эмульгирующими средствами. Многие спирты, например, линалоол, терпинеол и др. являются ценными душистыми веществами и широко используются в парфюмерии. Так называемые нитроглицерин и нитрогликоли, а также некоторые другие сложные эфиры азотной кислоты двух-, трех- и многоатомных спиртов применяются в горном и дорожностроительном деле в качестве взрывчатых веществ. Спирты необходимы в производстве лекарственных препаратов, в пищевой промышленности, парфюмерии и т. д..

Заключение

Спирты могут оказывать негативное воздействие на организм. Особенно ядовит метиловый спирт: 5 -10 мл спирта вызывают слепоту и сильное отравление организма, а 30 мл могут привести к смертельному исходу.

Этиловый спирт - наркотик. При приеме внутрь он вследствие высокой растворимости быстро всасывается в кровь и возбуждающе действует на организм. Под влиянием спиртного у человека ослабевает внимание, затормаживается реакция, нарушается координация, появляется развязность, грубость в поведении и т. д. Все это делает его неприятным и неприемлемым для общества. Но следствия употребления алкоголя могут быть и более глубокими. При частом потреблении появляется привыкание, пагубное пристрастие к нему и в конце концов тяжелое заболевание - алкоголизм. Спиртом поражаются слизистые оболочки желудочно-кишечного тракта, что может вести к возникновению гастрита, язвенной болезни желудка, двенадцатиперстной кишки. Печень, где должно происходить разрушение спирта, не справляясь с нагрузкой, начинает перерождаться, в результате возникает цирроз. Проникая в головной мозг, спирт отравляюще действует на нервные клетки, что проявляется в нарушении сознания, речи, умственных способностей, в появлении психических расстройств и ведет к деградации личности.

Особенно опасен алкоголь для молодых людей, так как в растущем организме интенсивно протекают процессы обмена веществ, а они особенно чувствительны к токсическому воздействию. Поэтому у молодежи быстрее, чем у взрослых, может появиться алкоголизм.

Список литературы

1. Глинка Н.Л. Общая химия. - Л.: Химия, 1978. - 720 с.

2.Джатдоева М.Р. Теоретические основы прогрессивных технологий. Химический раздел. - Ессентуки: ЕГИЭиМ, 1998. - 78 с.

3. Зурабян С.Э., Колесник Ю.А., Кост А.А. Органическая химия: Учебник. - М.: Медицина, 1989. - 432 с.

4. Метлин Ю.Г., Третьяков Ю.Д. Основы общей химии. - М.: Просвещение, 1980. - 157 с.

5. Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. - М.: Химия, 1974. - 624 с.

Размещено на Allbest.ru

Подобные документы

    Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.

    презентация , добавлен 07.04.2014

    Общие черты в строении молекул одноатомных и многоатомных спиртов. Свойства этилового спирта. Действие алкоголя на организм человека. Установление соответствия между исходными веществами и продуктами реакции. Химические свойства многоатомных спиртов.

    презентация , добавлен 20.11.2014

    Класс органических соединений - спиртов, их распространение в природе, промышленное значение и исключительные химические свойства. Одноатомные и многоатомные спирты. Свойства изомерных спиртов. Получение этилового спирта. Особенности реакций спиртов.

    доклад , добавлен 21.06.2012

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

    презентация , добавлен 16.03.2011

    Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа , добавлен 02.11.2008

    Типы спиртов в зависимости от строения радикалов, связанных с атомом кислорода. Радикально-функциональная номенклатура спиртов, их структурная изомерия и свойства. Синтез простых эфиров, реакция Вильямсона. Дегидратация спиртов, получение алкенов.

    презентация , добавлен 02.08.2015

    Соединения енолов и фенолов. Происхождение слова алкоголь. Классификация спиртов по числу гидроксильных групп, характеру углеводородного радикала. Их изомерия, химические свойства, способы получения. Примеры применения этилового и метилового спиртов.

    презентация , добавлен 27.12.2015

    Классификация спиртов по числу гидроксильных групп (атомности) и характеру углеводородного радикала. Получение безводного этанола - "абсолютного спирта", его применение в медицине, пищевой промышленности и парфюмерии. Распространение спиртов в природе.

    презентация , добавлен 30.05.2016

    Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.

    реферат , добавлен 04.02.2009

    Основные классы органических кислородосодержащих соединений. Методы получения простых эфиров. Межмолекулярная дегидратация спиртов. Синтез простых эфиров по Вильямсону. Получение симметричных простых эфиров из неразветвленных первичных спиртов.

Хмельные напитки, в состав которых входит этанол - одноатомный винный спирт, знакомы человечеству с древности. Их готовили из меда и перебродивших фруктов. В древнем Китае в напитки добавляли также рис.

Спирт из вина был получен на Востоке (VI -VII вв.). Европейские ученые создали его из продуктов брожения в XI в. Российский царский двор познакомился с ним в XIV в.: генуэзское посольство презентовало его как живую воду («аква вита»).

Т.Е. Ловиц, русский ученый XVIII в., впервые получил опытным путем абсолютный этиловый спирт при перегонке с использованием поташа - карбоната калия. Для очистки химик предложил применять древесный уголь.

Благодаря научным достижениям XIX -XX вв. стало возможным глобальное использование спиртов. Ученые прошлого разработали теорию строения водно-спиртовых растворов, исследовали их физико-химические свойства. Открыли способы брожения: циклический и непрерывно-проточный.

Значимые изобретения химической науки прошлого, которые сделали реальным полезное свойство спиртов:

  • ратификационный аппарат Барбе (1881)
  • брагоперегонный тарельчатый аппарат Саваля (1813)
  • разварник Генце (1873)

Был открыт гомологический ряд спиртовых веществ. Проведены серии экспериментов по синтезу метанола, этиленгликоля. Передовые научные исследования послевоенных лет XX века помогли улучшить качество производимой продукции. Подняли уровень отечественной спиртовой промышленности.

Распространение в природе

В природе спирты встречаются в свободным виде. Вещества также являются компонентами сложных эфиров. Естественный процесс брожения содержащих углеводы продуктов создает этанол, а также бутанол-1, изопропанол. Спирты в хлебопекарной промышленности, пивоварении, виноделии связано с использованием процесса брожения в этих отраслях. Большая часть феромонов насекомых представлена спиртами.

Спиртовые производные углеводов в природе:

  • сорбит — содержится в ягодах рябины, вишни, имеет сладкий вкус.

Многие растительные душистые вещества - это терпеновые спирты:

  • фенхол - компонент плодов фенхеля, смол хвойных деревьев
  • борнеол - составной элемент древесины борнеокамфорного дерева
  • ментол - компонент состава герани и мяты

Желчь человека, животных содержит желчные многоатомные спирты:

  • миксинол
  • химерол
  • буфол
  • холестанпентол

Вредное воздействие на организм

Повсеместное использование спиртов в сельском хозяйстве, промышленности, военном деле, транспортной сфере делают их доступными для рядовых граждан. Это становится причиной острых, в том числе массовых, отравлений, летальных исходов.

Опасность метанола

Опасным ядом является метанол. Он токсично воздействует на сердце, нервную систему. Прием внутрь 30 г метанола приводит к смерти. Попадание меньшего количества вещества - причина тяжелых отравлений с необратимыми последствиями (слепотой).

Предельно допустимая его концентрация в воздухе на производстве - 5 мг/м³. Опасны жидкости, содержащие даже минимальное количество метанола.

При легких формах отравления проявляются симптомы:

  • озноб
  • общая слабость
  • тошнота
  • головные боли

По вкусу, запаху метанол не отличается от этанола. Это становится причиной ошибочного употребления яда внутрь. Как отличить этанола от метанола в домашних условиях?


Медную проволоку сворачивают спиралью и сильно накаляют на огне. При ее взаимодействии с этанолом чувствуется запах прелых яблок. Соприкосновение с метанолом запустит реакцию окисления. Станет выделяться формальдегид - газ с неприятным резким запахом.

Токсичность этанола

Этанол приобретает токсичные и наркотические свойства в зависимости от дозы, способа попадания в организм, концентрации, длительности воздействия.

Этанол способен вызвать:

  • нарушение работы ЦНС
  • рак пищевода, желудка
  • гастрит
  • цирроз печени
  • болезни сердца

4-12 г этанола на 1 кг массы тела - смертельная разовая доза. Канцерогенным, мутагенным, токсичным веществом является ацетальдегид - основной метаболит этанола. Он изменяет мембраны клеток, структурные характеристики эритроцитов, повреждает ДНК. Изопропанол похож на этанол токсическим воздействием.

Производство спиртов и их оборот регулируются государством. Этанол не признан юридически наркотиком. Но его токсичное воздействие на организм доказано.

Особенно разрушительным становится влияние на головной мозг. Уменьшается его объем. Происходят органические изменения нейронов коры мозга, их повреждение и гибель. Возникают разрывы капилляров.

Нарушается нормальная работа желудка, печени, кишечника. При чрезмерном употреблении крепкого алкоголя появляются острые боли, диарея. Слизистая оболочка органов желудочно-кишечного тракта повреждается, застаивается желчь.

Ингаляционное воздействие спиртов

Общераспространенное использование спиртов во многих отраслях промышленности создает угрозу их ингаляционного воздействия. Токсичное воздействие исследовали на крысах. Получены результаты приведены в таблице.

Пищевая промышленность

Этанол - основа алкогольных напитков. Его получают из сахарной свеклы, картофеля, винограда, злаковых культур - ржи, пшеницы, ячменя, другого сырья, содержащего сахар или крахмал. В процессе производства применяются современные технологии очистки от сивушных масел.

Они подразделяются на:

  • крепкие с долей этанола 31-70 % (коньяк, абсент, ром, водка)
  • средней крепости - от 9 до 30 % этанола (ликеры, вина, наливки)
  • слабоалкогольные - 1,5-8 % (сидр, пиво).

Этанол является сырьем для натурального уксуса. Продукт получается при окислении уксуснокислыми бактериями. Аэрирование (принудительное насыщение воздухом) - необходимое условие процесса.

Этанол в пищевой промышленности не единственный спирт. Глицерин - пищевая добавка Е422 - обеспечивает соединение несмешиваемых жидкостей. Его используют при изготовлении кондитерских, макаронных, хлебобулочных изделий. Глицерин входит в состав ликеров, придает напиткам вязкость, сладкий вкус.

Применение глицерина благоприятно влияет на продукцию:

  • клейкость макарон уменьшается
  • консистенция конфет, кремов улучшается
  • предотвращается быстрое зачерствение хлеба, проседание шоколада
  • выпекание изделий происходит без налипания крахмала

Распространено использование спиртов как сахарозаменителей. Для этого по свойствам подходят маннит, ксилит, сорбит.

Парфюмерия и косметика

Вода, спирт, парфюмерная композиция (концентрат) - основные компоненты парфюмерных продуктов. Они используются в разных пропорциях. Таблица представляет виды парфюмерных изделий, пропорции главных составных частей.

В производстве парфюмерной продукции этанол высшей очистки выступает растворителем душистых веществ. При реакции с водой образуются соли, которые выпадают в осадок. Раствор несколько дней отстаивается и фильтруется.

2-фенилэтанол в парфюмерной и косметической промышленности заменяет натуральное розовое масло. Жидкость обладает легким цветочным запахом. Входит в состав фантазийных и цветочных композиций, косметического молочка, кремов, эликсиров, лосьонов.

Основной базой многих средств по уходу является глицерин. Он способен притягивать влагу, активно увлажнять кожу, делать ее эластичной. Сухой, обезвоженной коже полезны крема, маски, мыла с глицерином: он создает на поверхности влагосберегающую пленку, сохраняет мягкость кожного покрова.

Существует миф: что использование спирта в косметике вредно. Однако эти органические соединения - необходимые для производства продукции стабилизаторы, носители активных веществ, эмульгаторы.

Спирты (особенно жирные) делают средства по уходу кремообразными, смягчают кожу и волосы. Этанол в шампунях и кондиционерах увлажняет, быстро испаряется после мытья головы, облегчает расчесывание, укладку.

Медицина

Этанол в медицинской практике используют как антисептик. Он уничтожает микробы, предупреждает разложение в открытых ранах, задерживает болезненные изменения крови.

Его подсушивающее, обеззараживающее, дубящее свойства - причина использования для обработки рук медицинского персонала до работы с пациентом. Во время искусственной вентиляции легких этанол незаменим как пеногаситель. При нехватке медикаментозных средств становится компонентом общей анестезии.

При отравлении этиленгликолем, метанолом этанол становится противоядием. После его приема уменьшается концентрация токсичных веществ. Применяют этанол в согревающих компрессах, при растирании для охлаждения. Вещество восстанавливает организм при лихорадочном жаре и простудном ознобе.

Спирты в лекарственных средствах и их воздействие на человека исследует наука фармакология. Этанол как растворитель используют при изготовлении экстрактов, настоек целебного растительного сырья (боярышника, перца, женьшеня, пустырника).


Принимать эти жидкие лекарственные средства можно только после врачебной консультации. Необходимо строго следовать предписанной медиком дозировке!

Топливо

Коммерческая доступность метанола, бутанола-1, этанола - причина использования их в качестве топлива. Смешивают с дизельным топливом, бензином, применяют как горючее в чистом виде. Смеси позволяют уменьшить токсичность выхлопных газов.

Спирт, как альтернативный источник горючего имеет свои минусы:

  • у веществ повышенные коррозийные характеристики, в отличие от углеводородов
  • если в топливную систему попадет влага, произойдет резкое снижение мощности из-за растворимости веществ в воде
  • существует риск возникновения паровых пробок, ухудшения работы двигателя из-за низких температур кипения веществ.

Однако газовые и нефтяные ресурсы исчерпаемы. Поэтому применение спиртов в мировой практике стало альтернативой использования привычного топлива. Налаживается их массовое производство из отходов промышленности (целлюлозно-бумажной, пищевой, деревообрабатывающей) - одновременно решается проблема утилизации.

Промышленная переработка растительного сырья позволяет получить экологически чистое биотопливо - биоэтанол. Сырьем для него является кукуруза (США), сахарный тростник (Бразилия).

Положительный энергетический баланс, возобновляемость топливного ресурса делают производство биоэтанола популярным направлением мировой экономики.

Растворители, поверхностно-активные вещества

Кроме производства косметики, парфюмерии, жидких лекарственных средств, кондитерских изделий спирты еще являются хорошими растворителями:

Спирт как растворитель:

  • при изготовлении металлических поверхностей, электронных элементов, фотобумаги, фотопленок
  • при очистке натуральных продуктов: смол, масла, воска, жиров
  • в процессе экстракции - извлечения вещества
  • при создании синтетических полимерных материалов (клея, лака), красок
  • в производстве медицинских, бытовых аэрозолей.

Популярные растворители - изопропанол, этанол, метанол. Также используют многоатомные и циклические вещества: глицерин, циклогексанол, этиленгликоль.

Поверхностно-активные вещества производят из высших жирных спиртов. Полноценный уход за автомобилем, посудой, квартирой, одеждой возможен благодаря ПАВ. Они входят в состав чистящих, моющих средств, используются во многих отраслях экономики (см. таблицу).

Отрасль ПАВ: функции, свойства
Сельское хозяйство Входят в состав эмульсий; увеличивают продуктивность процесса передачи растениям питательных веществ
Строительство Уменьшают водопотребность бетона, цементных смесей; увеличивают морозостойкость, плотность материалов
Кожевенная промышленность Предотвращают слипание, повреждения изделий
Текстильная промышленность Снимают статическое электричество
Металлургия Снижают трение; способны выдержать высокие температуры
Бумажная промышленность Разделяют вареную целлюлозу от чернил в процессе переработки использованной бумаги
Лакокрасочная промышленность Способствуют полному проникновению краски на поверхности, включая небольшие углубления

Применение спиртов в пищевой промышленности, медицине, производстве парфюмерии и косметике, использование в качестве топлива, растворителей, поверхностно-активных веществ положительно сказывается на состояние экономики страны. Приносит удобство в жизнь человека, но требует соблюдения техники безопасности из-за токсичности веществ.

Это производные углеводородов, в которых один атом водорода замещен на гидрокси- группу. Общая формула спиртов - CnH 2 n +1 OH .

Классификация одноатомных спиртов.

В зависимости от положения, где расположена ОН -группа, различают:

Первичные спирты:

Вторичные спирты:

Третичные спирты:

.

Изомерия одноатомных спиртов.

Для одноатомных спиртов характерна изомерия углеродного скелета и изомерия положения гидрокси-группы.

Физические свойства одноатомных спиртов.

Реакция идет по правилу Марковникова, поэтому из первичных алкенов можно получить только певичный спирт.

2. Гидролиз алкилгалогенидов при воздействии водных растворов щелочей:

Если нагрев слабый, то происходит внутримолекулярная дегидратация, в результате чего образуются простые эфиры:

Б) Спирты могут реагировать с галогенводородами, причем третичные спирты реагируют очень быстро, а первичные и вторичные - медленно:

Применение одноатомных спиртов.

Спирты используют преимущественно в промышленном органическом синтезе, в пищевой промышленности, в медицине и фармации.

Спиртами называются производные углеводородов, со­держащие одну или несколько групп -ОН, называемую гидроксильной группой или гидроксилом.

Спирты классифицируют:

1. По числу гидроксильных групп, содержащихся в молеку­ле, спирты делятся на одноатомные (с одним гидроксилом), двухатомные (с двумя гидроксилами), трехатомные (с тремя гидроксилами) и многоатомные.

Подобно предельным углеводородам, одноатомные спирты образуют закономерно построенный ряд гомологов:

Как и в других гомологических рядах, каждый член ряда спиртов отличается по составу от предыдущего и последующе­го членов на гомологическую разность (-СН 2 -).

2. В зависимости от того, при каком атоме углерода находит­ся гидроксил, различают первичные, вторичные и третичные спирты. В молекулах первичных спиртов содержится группа -СН 2 ОН, связанная с одним радикалом или с атомом водорода у метанола (гидроксил при первичном атоме углерода). Для вторичных спиртов характерна группа >СНОН, связанная с двумя радикалами (гидроксил при вторичном атоме углерода). В молекулах третичных спиртов имеется группа >С-ОН, свя­занная с тремя радикалами (гидроксил при третичном атоме углерода). Обозначая радикал через R, можно написать форму­лы этих спиртов в общем виде:

В соответствии с номенклатурой ИЮПАК при построении названия одноатомного спирта к названию родоначального углеводорода добавляется суффикс -ол. При наличии в соедине­нии более старших функций гидроксильная группа обознача­ется префиксом гидрокси- (в русском языке часто используется префикс окси-). В качестве основной цепи выбирается наиболее длинная неразветвленная цепь углеродных атомов, в состав которой входит атом углерода, связанный с гидроксильной группой; если соединение является ненасыщенным, то в эту цепь включается также и кратная связь. Следует заметить, что при определении начала нумерации гидроксильная функция обычно имеет преимущество перед галогеном, двойной связью и алкилом, следовательно, нумерацию начинают с того конца цепи, ближе к которому расположена гидроксильная группа:

Простейшие спирты называют по радикалам, с которыми соединена гидроксильная группа: (СН 3) 2 СНОН - изопропиловый спирт, (СН 3) 3 СОН - трет-бутиловый спирт.

Часто употребляется рациональная номенклатура спиртов. Согласно этой номенклатуре, спирты рассматриваются как про­изводные метилового спирта - карбинола:

Эта система удобна в тех случаях, когда название радикала яв­ляется простым и легко конструируемым.

2. Физические свойства спиртов

Спирты имеют более высокие температуры кипения и значительно менее летучи, имеют более высокие температуры плавления и луч­ше растворимы в воде, чем соответствующие углеводороды; однако различие уменьшается с ростом молекулярной массы.

Разница в физических свойствах связана с высокой поляр­ностью гидроксильной группы, которая приводит к ассоциации молекул спирта за счет водородной связи:

Таким образом, более высокие температуры кипения спир­тов по сравнению с температурами кипения соответствующих углеводородов обус­ловлены необходимостью разрыва водородных связей при пе­реходе молекул в газовую фазу, для чего требуется дополни­тельная энергия. С другой стороны, такого типа ассоциация приводит как бы к увеличению молекулярной массы, что естественно, обусловливает уменьшение летучести.

Спирты с низкой молекулярной массой хорошо растворимы в воде, это понятно, если учесть возможность образования во­дородных связей с молекулами воды (сама вода ассоциирована в очень большой степени). В метиловом спирте гидроксильная группа составляет почти половину массы молекулы; неудиви­тельно поэтому, что метанол смешивается с водой во всех отно­шениях. По мере увеличения размера углеводородной цепи в спирте влияние гидроксильной группы на свойства спиртов уменьшается, соответственно понижается растворимость веществ в воде и увеличивается их растворимость в углеводородах. Фи­зические свойства одноатомных спиртов с высокой молекуляр­ной массой оказываются уже очень сходными со свойствами соответствующих углеводородов.