Необычный объект обнаружили при помощи новейшего телескопа ALMA (Atacama Large Millimeter/submillimeter Array), работающий в высокогорной чилийской пустыне Атакама в Южной Америке. Претендент на звание самого холодного объекта имеет температуру всего 1 градус Кельвина или минус 272,15 градусов по шкале Цельсия.

nasa.gov

Туманность Бумеранга всего на один градус выше абсолютного нуля — минимально возможной температуры, при которой замерзает самый легкий химический элемент — водород. Специалисты, работающие с ALMA, говорят, что данная туманность едва видна на фоне микроволнового фона Вселенной, представляющего собой остаточное излучение от Большого Взрыва, произошедшего 13,7 млрд лет назад. Считается, что микроволновой фон обладает минимальной из возможных температур и на его фоне все остальные объекты во Вселенной теплее, следовательно, они обладают тепловым излучением и видны в инфракрасном спектре наблюдений.

Однако Туманность Бумеранга тут практически не видна, телескоп передал лишь бумерангообразные очертания этой туманности, что указывает на крайне низкую температуру данного объекта. Ученые говорят, что низкая температура туманности — это лишь одна сторона медали. Другая — в том, что эта туманность обладает небольшим оптическим свечением, что невозможно объяснить современными научными знаниями. Впрочем, ученые говорят, что современной физике известно очень мало о сверххолодных космических объектах и многие данные здесь либо не полны, либо основаны на неподтвержденной теории.

Сама по себе Туманность Бумеранга представляет собой объект, удаленный от нас на 5000 световых лет в созвездии Центавра. Это достаточно молодой объект, что добавляет интриги, так как неясно, как в современной части Вселенной мог возникнуть столь холодный объект. Возможно, что в центре туманности есть несколько небольших или умирающих звезд, которые дают ему светимость, но пока это не подтверждено.

Ученые говорят, что туманность - это пре-планетарный объект, то есть тут нет звездных систем, подобных нашей, следовательно, и планет тут тоже нет. Вероятно, что столь низкая температура туманности обусловлена как раз работой тех самых звезд. Здесь создается эффект, похожий на тот, что существует в холодильниках. Звезды просто забирают все тепло из туманности, оставляя ее в виде гигантской морозильной камеры. При этом, свет звезд пронзает всю туманность и газо-пылевые облака в ней начинают светиться.

Отметим, что Туманность Бумеранга была открыта еще в 2003 году при помощи телескопа Хаббл, но этот телескоп не имеет системы температурного мониторинга, поэтому температура Туманности до сих пор была не выясненной. За десять лет исследований ученые, которые сначала определили форму газового облака в созвездии Центавра как галстук-бабочку или песочные часы, теперь сравнивают его с призраком. Специалисты, рассматривая Бумеранг, заметили, что туманность окутывает вытянутая оболочка, которая по форме напоминает привидение.

Вещество нашей Вселенной структурно организовано и образует большое многообразие феноменов различного масштаба с весьма сильно разнящимися физическими свойствами. Одно из важнейших таких свойств - температура. Зная этот показатель и используя теоретические модели, можно судить о многих характеристиках того или иного тела - о его состоянии, строении, возрасте.

Разброс значений температуры у различных наблюдаемых компонентов Вселенной весьма велик. Так, самая низкая величина ее в природе зафиксирована для туманности Бумеранг и составляет всего 1 K. А каковы самые высокие температуры во Вселенной, известные на сегодняшний день, и о каких особенностях различных объектов свидетельствуют? Для начала посмотрим, как же ученые определяют температуру удаленных космических тел.

Спектры и температура

Всю информацию о далеких звездах, туманностях, галактиках ученые получают, исследуя их излучение. По тому, на какой частотный диапазон спектра приходится максимум излучения, определяется температура как показатель средней кинетической энергии, которой обладают частицы тела, - ведь частота излучения связана прямой зависимостью с энергией. Так что самая высокая температура во Вселенной должна отражать, соответственно, и наибольшую энергию.

Чем более высокими частотами характеризуется максимум интенсивности излучения, тем горячее исследуемое тело. Однако полный спектр излучения распределен по очень широкому диапазону, и по особенностям видимой его области («цвету») можно делать определенные общие выводы о температуре, например, звезды. Окончательная же оценка производится на основе изучения всего спектра с учетом полос эмиссии и поглощения.

Спектральные классы звезд

На основе спектральных особенностей, включая цвет, была разработана так называемая Гарвардская классификация звезд. Она включает семь основных классов, обозначаемых буквами O, B, A, F, G, K, M и несколько дополнительных. Гарвардская классификация отражает поверхностную температуру звезд. Солнце, фотосфера которого разогрета до 5780 K, относится к классу желтых звезд G2. Наиболее горячи голубые звезды класса O, самые холодные - красные - принадлежат классу M.

Гарвардскую классификацию дополняет Йеркская, или классификация Моргана-Кинана-Келлман (МКК - по фамилиям разработчиков), подразделяющая звезды на восемь классов светимости от 0 до VII, тесно связанных с массой светила - от гипергигантов до белых карликов. Наше Солнце - карлик класса V.

Примененные совместно, в качестве осей, по которым отложены значения цвет - температура и абсолютная величина - светимость (свидетельствующая о массе), они дали возможность построить график, широко известный как диаграмма Герцшпрунга-Рассела, на котором отражены главные характеристики звезд в их взаимосвязи.

Самые горячие звезды

Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).

Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона - звезды Альнитак, - которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) - R136a1 в Большом Магеллановом облаке - оценена в 53 000 K.

Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.

Термоядерные топки космоса

В ядрах массивных звезд, стиснутых колоссальным давлением, развиваются действительно высокие температуры, достаточные для нуклеосинтеза элементов вплоть до железа и никеля. Так, расчеты для голубых гигантов, сверхгигантов и очень редких гипергигантов дают для этого параметра к концу жизни звезды порядок величины 10 9 K - миллиард градусов.

Строение и эволюция подобных объектов пока еще недостаточно хорошо изучены, соответственно и модели их еще далеко не полны. Ясно, однако, что очень горячими ядрами должны обладать все звезды больших масс, к каким бы спектральным классам они ни принадлежали, - например, красные сверхгиганты. Несмотря на несомненные различия в процессах, протекающих в недрах звезд, ключевым параметром, определяющим температуру ядра, является масса.

Звездные остатки

От массы в общем случае зависит и судьба звезды - то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, - белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.

Гигантские звезды ждет иная судьба - взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 10 11 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда - очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч - до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда - не то место, где температура - самая высокая во Вселенной.

Далекие экзотические объекты

Существует класс космических объектов, достаточно удаленных (а значит, и древних), характеризующихся совершенно экстремальными температурами. По современным воззрениям, квазар представляет собой обладающую мощным аккреционным диском, образуемым падающим на нее по спирали веществом - газом или, точнее, плазмой. Собственно, это активное галактическое ядро в стадии формирования.

Скорость движения плазмы в диске настолько велика, что вследствие трения она разогревается до сверхвысоких температур. Магнитные поля собирают излучение и часть вещества диска в два полярных пучка - джета, выбрасываемых квазаром в пространство. Это чрезвычайно высокоэнергетический процесс. Светимость квазара в среднем на шесть порядков выше светимости самой мощной звезды R136a1.

Теоретические модели допускают для квазаров эффективную температуру (то есть присущую абсолютно черному телу, излучающему с той же яркостью) не более 500 миллиардов градусов (5×10 11 K). Однако недавние исследования ближайшего квазара 3C 273 привели к неожиданному результату: от 2×10 13 до 4×10 13 K - десятки триллионов кельвинов. Такая величина сравнима с температурами, достигающимися в явлениях с наивысшим известным энерговыделением - в гамма-всплесках. На сегодняшний день это самая высокая температура во Вселенной, которая была когда-либо зарегистрирована.

Жарче всех

Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.

Если вернуться к самому моменту ее рождения - приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, - мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.

Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10 -43 секунд. Самый горячий объект в эту эпоху - сама наша Вселенная, с планковской температурой 1,4×10 32 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.

Ученые из России нашли на просторах Вселенной удивительный объект – квазар, который получил индекс 3C 273. Этот объект интересен тем, что имеет настолько высокую температуру, что ее нельзя описать существующими физическими теориями.

Квазары, как и черные дыры, это малоизученные объекты в космосе, которые очень интересуют астрономов. Ученым удалось найти в созвездии Девы новый квазар. После тщательного изучения выяснилось, что 3C 273 имеет колоссальную температуру, которая колеблется от 10 до 40 триллионов градусов по Цельсию! Ученые были , ведь такой температурный предел выходит за рамки наших физических знаний.

Ранее ученые считали, что ядра квазаров не превышают температуру в 500 миллиардов градусов, но 3C 273 «поломал» все научные расчеты и ввел академический мир в ступор. «Это совершенно не сходится с нашими вычислениями, мы пока что не нашли нормального ответа, почему этот объект . Скорее всего, мы стоим на пороге новой эры исследования Вселенной» – сообщил исследователь из России Н. Кардашев.

Квазары удивительны тем, что излучают огромное количество света. Некоторые подобные объекты могут создавать излучения, которые больше всех звезд в нашей галактике! Есть теория, которая гласит, что квазары это ранняя «стадия» новых галактик, которая растет за счет поглощения вещества черной дырой.

Находится самый горячий объект во Вселенной на очень далеком , со скоростью света добраться до него можно только через 2,44 миллиарда лет.

Туманность Бумеранг. Снимок телескопа «Хаббл»
Фото: NASA

Ученых давно интересовал вопрос: насколько холодно в космосе. Как правило, температура там не ниже температуры реликтового излучения, которое пронизывает всю Вселенную. Однако, в те местах, где умирают звезды, температура может опускаться гораздо ниже. Именно такое место удалось отыскать ученым в планетарной туманности Бумеранг.

Средние показатели температуры на Земле, планете, которая находится от Солнца на расстоянии более 149 миллионов километров, держатся в пределах 300 К. Стоит отметить, что планета еще обогревается горячим ядром, а кроме того, в случае отсутствия атмосферы температурные показатели были бы еще на 50 К меньше. Чем дальше находится объект от ближайшей звезды, тем там холоднее. К примеру, на Плутоне средняя температура составляет всего 44 К. При таких показателях даже азот замерзает, а значит, от земной атмосферы практически ничего бы не осталось, ведь в ней 80 процентов азота. За пределами Солнечной системы, в межзвездном пространстве, значительно холоднее.

По галактике плавают молекулярные облака, вещество в которых имеет температуру примерно 10-20 К, что близко к абсолютному нолю. В галактике более низких температур больше нет, поскольку остальные ее части в той или иной мере согреты звездным излучением.

Однако в межгалактическом пространстве температура еще ниже, чем в молекулярном облаке, которое находится далеко от источников излучения. Между собой Галактики разделяются миллионами световых лет пустоты, и единственным излучением, доходящим во все уголки космоса, является микроволновое реликтовое излучение, которое осталось от Большого Взрыва. За счет волн реликтового излучения температура в межгалактическом пространстве не опускается ниже 2,73 К. На первый взгляд может показаться, что холоднее просто быть не может, но на самом деле это далеко не так.

Если говорить более точно, то холоднее теоретически может быть. Для того, чтобы температурные показатели межгалактического пространства опустились ниже 2,73 К, необходимо дождаться, чтобы Вселенная немного расширилась. Это расширение происходит уже сейчас – Вселенная расширяется со скоростью порядка 770 километров в секунду на 3,26 миллионов световых лет. В настоящее время возраст Вселенной достигает 13,78 миллиардов лет, а когда ей станет в два раза больше, реликтовое излучение сможет удерживать температуру лишь на один градус выше абсолютного ноля.

И самое неожиданное известие от ученых: наиболее холодное место во Вселенной отыскать можно уже в данный момент, причем, не очень далеко от Земли – в туманности Бумеранг, расположившееся от нашей планеты на расстоянии всего 5 тысяч световых лет.

В центре данной туманности расположена умирающая звезда, бывшая в прошлом подобно Солнцу, желтым карликом. Подобно остальным звездам одного спектрального класса, она стала красным гигантом и закончила существование в системе, возникшей из белого карлика и препланетарной туманности, возникшей вокруг него.

Планетарной туманностью принято называть остатки периферийных участков красного гиганта, сброшенных звездой в тот период, когда ее центр сжался до размеров белого карлика. Но, перед тем, как стать планетарной туманностью, красный карлик на некоторое время становится препланетарной туманностью. В том случае, если в ней возникнут все необходимые условия, температурные показатели в туманности могут опуститься ниже самых низких температур во Вселенной. К подобным выводам пришел индийский астроном Равендра Сахай, причем, значительно раньше, чем его команда создала температурную карту туманности Бумеранг и убедилась, что там и правда очень холодно.

Туманность Бумеранг - самое холодное место во вселенной
Фото: ESA/NASA

Возникает препланетарная туманность в том случае, если в ядре звезды температура повышается, но в это же время периферийное вещество лишь начинает отделяться. Этот процесс происходит несколькими выбросами потоков плазмы, которые начинаются во внешнем слое звездного вещества. Эти потоки по космическим меркам существуют очень недолго – всего несколько тысяч лет. При условии, что плазма в потоке движется быстро (а в туманности Бумеранг это именно так), то потеря вещества звездой происходит с большой скоростью. Именно благодаря этой огромной скорости в туманности и возникают те области, в которых температурный показатель не превышает 0,5 К, что значительно ниже температуры в любом другом месте Вселенной.

А все потому, что тепловая энергия молекул переходит в кинетическую энергию движения, за счет чего воздух и остывает.

No related links found

Побить это температурный рекорд вряд ли удастся; в момент рождения наша Вселенная имела температуру около 10 32 К, и под словом «момент» мы здесь подразумеваем не секунду, а планковскую единицу времени, равную 5 10 -44 секунды. В это буквально неизмеримо короткое время Вселенная была так горяча, что мы понятия не имеем, по каким законам она существовала; на таких энергиях не существуют даже фундаментальные частицы.

2. БАК

Второе место в списке самых горячих мест (или моментов времени, в данном случае разницы нет) после Большого Взрыва занимает наша голубая планета. В 2012 году на Большом Адронном коллайдере физики столкнули разогнанные до 99% скорости света тяжелые ионы и на краткое мгновение получили температуру в 5,5 триллионов Кельвин (5*10 12) (или градусов Цельсия — на таких масштабах это одно и то же).

3. Нейтронные звезды

10 11 К - такова температура внутри новорожденой нейтронной звезды. Вещество при такой температуре совсем не похоже на привычные нам формы. Недра нейтронных звезд состоят из бурлящего «супа» электронов, нейтронов и других элементов. Всего за несколько минут звезда остывает до 10 9 К, а за первые сто лет существования — еще на порядок.

4. Ядерный взрыв

Температура внутри огненного шара ядерного взрыва составляет около 20 000 К. Это больше, чем температура на поверхности большинства звезд главной последовательности.

5. Самые горячие звезды (кроме нейтронных)

Температура поверхности Солнца — около шести тысяч градусов, но это не предел для звезд; самая горячая из известных на сегодняшний день звезд, WR 102 в созвездии Стрельца, раскалена до 210 000 К — это в десять раз горячее атомного взрыва. Таких горячих звезд сравнительно немного (в Млечном Пути их нашли около сотни, еще столько же в других галактиках), они в 10−15 раз массивнее Солнца и намного ярче него.