С чего начинается космос и где кончается Вселенная? Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

(Visited 1 times, 3 visits today)

Андрей Кисляков, для РИА Новости.

Казалось бы, не так уж и существенно, где заканчивается «Земля» и начинается космос. Между тем споры вокруг значения высоты, дальше которой уже простирается безграничное космическое пространство, не затихают уже почти столетие. Последние данные, полученные путем досконального изучения и обобщения в течение почти двух лет большого объема информации, позволили канадским ученым в первой половине апреля заявить о том, что космос начинается на высоте 118 км. С точки зрения влияния на Землю космической энергии это число весьма важно для климатологов и геофизиков.

С другой стороны, окончательно завершить этот спор, установив всем миром единую, устраивающую всех границу, вряд ли скоро удастся. Дело в том, что существует несколько параметров, которые считаются принципиальными для соответствующей оценки.

Немного истории. То, что за пределами земной атмосферы действует жесткое космическое излучение, было известно давно. Однако четко определить границы атмосферы, измерить силу электромагнитных потоков и получить их характеристики не удавалось до начала запусков искусственных спутников Земли. Между тем, основной космической задачей, как СССР, так и Соединенных Штатов в середине 50-х годов была подготовка пилотируемого полета. Это, в свою очередь, требовало ясных знаний относительно условий сразу за пределами земной атмосферы.

Уже на втором советском спутнике, запущенном в ноябре 1957 г., находились датчики для измерения солнечного ультрафиолетового, рентгеновского и других видов космического излучения. Принципиально важным для успешного осуществления пилотируемых полетов стало открытие в 1958 г. двух радиационных поясов вокруг Земли.

Но вернемся к установленным канадскими учеными из Университета Калгари 118 км. А почему, собственно, такая высота? Ведь, так называемая «линия Кармана», неофициально признанная границей между атмосферой и космосом, «проходит» по 100-километровой отметке. Именно там плотность воздуха уже столь мала, что летательный аппарат должен двигаться с первой космической скоростью (примерно 7,9 км/с) для предотвращения падения на Землю. Но в таком случае ему уже не требуются и аэродинамические поверхности (крыло, стабилизаторы). На основании этого Всемирная ассоциация аэронавтики приняла высоту 100 км в качестве водораздела между аэронавтикой и астронавтикой.

Но степень разреженности атмосферы - далеко не единственный параметр, определяющий границу космоса. Тем более что «земной воздух» на высоте 100 км не заканчивается. А как, скажем, меняется состояние того или иного вещества с увеличением высоты? Может это и есть главное, что определяет начало космоса? Американцы, в свою очередь, считают любого, кто побывал на высоте 80 км, истинным астронавтом.

В Канаде решили выявить значение параметра, который, как представляется, имеет значение для всей нашей планеты. Они решили выяснить, на какой высоте заканчивается влияние атмосферных ветров и начинается воздействие потоков космических частиц.

Для этой цели в Канаде разработали специальный прибор STII (Super - Thermal Ion Imager), который вывели на орбиту с космодрома на Аляске два года назад. С его помощью и было установлено, что граница между атмосферой и космосом расположена на высоте 118 километров над уровнем моря.

При этом сбор данных длился всего лишь пять минут, пока несущий его спутник поднимался на установленную для него высоту в 200 км. Таков единственный способ собрать информацию, поскольку эта отметка находится слишком высоко для стратосферных зондов и слишком низко для исследования со спутников. Впервые при исследовании были учтены все составляющие, в том числе движение воздуха в самых верхних слоях атмосферы.

Приборы, подобные STII, появятся для продолжения исследований приграничных областей космоса и атмосферы в качестве полезного груза на спутниках Европейского космического агентства, срок активного существования которых составит четыре года. Это важно, т.к. продолжение исследований пограничных регионов позволит узнать много новых фактов о воздействии космического излучения на климат Земли, о том, какое воздействие энергия ионов имеет на окружающую нас среду.

Изменение интенсивности солнечной радиации, напрямую связанное с появлением пятен на нашем светиле, каким-то образом влияет на температуру атмосферы, и последователи аппарата STII могут быть использованы для обнаружения этого влияния. Уже сегодня в Калгари разработали 12 различных анализирующих устройств, предназначенных для изучения различных параметров ближнего космоса.

Но говорить о том, что начало космоса ограничили 118 км не приходится. Ведь со своей стороны правы и те, кто считает настоящим космосом высоту в 21 миллион километров! Именно там практически исчезает воздействие гравитационного поля Земли. Что ждет исследователей на такой космической глубине? Ведь дальше Луны (384 000 км) мы не забирались.

Мечты о Космосе ныне может воплотить каждый: 35 миллионов долларов - и вы мчитесь в звездные дали, оставив Байконур где-то внизу. Как стать восьмым космическим туристом - подробная инструкция, этапы подготовки, цены и достопримечательности Большого Черного.

  • Туры на майские по всему миру
  • Горящие туры по всему миру

Вот и наступил тот знаменательный день, когда мы можем предложить нашим любимым читателям совершенно новое туристическое направление. Близкое - всего 100 км и безграничное, безвизовое, но со строжайшими таможенными правилами, притягательное и совершенно не имеющее притяжения. Его можно увидеть, просто подойдя к окну, а отправиться в путешествие - из одной-единственной точки нашей планеты. Туры предлагаются лишь пару раз в году и только на 10 дней, а подготовка к путешествию продлится никак не меньше 6 месяцев. Размещение на месте - почти что в стенном шкафу, при этом отбывать ко сну придётся по команде «задёрнуть шторы!». Ночная жизнь отсутствует напрочь, зато на протяжении суток можно встретить восход солнца 16 раз. Там реально существует утопическое идеальное общество: ничего нельзя купить и продать, от каждого по способностям, каждому по потребностям. Более того, местное население состоит всего из шести человек. В придачу это самый эксклюзивный эксклюзив: на сегодняшний день там побывали лишь семь туристов, стоимость же путёвки начинается от 35 000 000 (тридцати пяти миллионов) USD . В общем, не будем больше мучить вас неопределённостью - Добро пожаловать в космос! Цены на странице указаны на октябрь 2018 г.

Юрий Гагарин

Где находится космос

Космос - единственная страна, которую можно увидеть из любой точки земного шара, просто подняв голову и вперив взор в небесную высь. Строго говоря, бездонный голубой купол над нашей макушкой - не что иное, как атмосфера Земли, и уже за её пределами начинается Абсолютное Ничто (или Абсолютное Всё, кому как нравится). Из-за преломления солнечных лучей в ней натуральный цвет Космоса - чёрный - превращается в чудесную лазоревость солнечного дня или нежную серую вуаль предрассветных сумерек. Истинная всепоглощающая чернота открывается только при выходе из внутренних слоёв земной атмосферы - и на данный момент это увидели чуть больше 500 человек из 7 миллиардов живущих на планете. Происходит это постепенно: будто невидимый художник споласкивает акварельные кисточки в прозрачной пиалке - сначала запачканную в голубой краске, потом в синей, затем в густо-фиолетовой и наконец в чёрной.

Границей космоса принято считать условную высоту в 100 км над уровнем моря, по-научному называемую линией Кармана. Это, если можно так выразиться, уже не родина, но ещё и не чужбина: именно на этой высоте рождается один из самых нами любимых природных аттракционов - северное сияние, а внешняя часть земной атмосферы простирается ещё на десятки тысяч километров вверх. Достижение летательным аппаратом стокилометровой отметки и является главным критерием, по которому полёт определяют как космический .

Расстояние от Земли до МКС почти вполовину меньше расстояния от Москвы до Санкт-Петербурга – 350-370 км.

Как добраться до космоса

Рабочая лошадка, доставляющая космических туристов до места назначения - российский пилотируемый корабль «Союз» в паре с одноимённой ракетой-носителем. На сегодняшний день они совершили более ста успешных полётов. Трансфер осуществляется «до порога отеля» - то есть «Союз» с туристом на борту пристыковывается непосредственно к месту его жительства на ближайшие 10 дней (обычная продолжительность космотура) - Международной космической станции.

Трансфер в целом нельзя назвать суперкомфортным, однако всё необходимое для безопасного и приемлемого для человеческого организма путешествия на борту «Союза» имеется. Длина корабля - чуть более 7 м, ширина - около 3 м при транспортировке ракетой-носителем и почти 11 м с развёрнутыми солнечными батареями (при самостоятельном перемещении и в пристыкованном к МКС состоянии). «Союз» состоит из трёх отсеков: приборного, спускаемого аппарата и бытового. Космотуристы, как и космонавты, располагаются в среднем модуле, спускаемом. Кубатура его жилого объёма - 3,5 м, в котором легко располагаются три человека - буквально ловкость рук и никакого мошенничества! В спускаемой капсуле космические путешественники потом вернутся на Землю. Ещё одно важное для туриста место - туалет - располагается в бытовом отсеке, кроме этого напичканном системами жизнеобеспечения и сближения. Там же находятся стыковочный узел и люк, через который космотурист переходит из «автобуса» в «отель».

Путешествие от «крыши дома своего» до МКС занимает около шести часов, а обратный «трансфер» от МКС до казахской степи - всего 3,5 часа. Как прекрасно оно, притяжение Земли!

Суборбитальные полёты планируется осуществлять на специально сконструированных для этой затеи космических кораблях - до МКС при всём желании они не дотянут, но преодолеть границу Космоса, попарить 5-6 минут в невесомости и целыми-невредимыми вернуться на Землю вполне могут. Virgin Galactic будет использовать космолёт SpaceShip в паре с самолётом-разгонщиком WhiteKnight. Шесть космических туристов разместятся на эргономичных мультифункциональных креслах в салоне космолёта, кроме них на корабле будут находиться два члена экипажа. Внутреннее пространство космолёта в диаметре чуть больше салона привычного самолёта - чтобы не было толкучки в невесомости. Дорога от Земли до линии Кармана займёт около часа, а космическое путешествие в целом - 2,5 часа.

Space Adventures собирается отправлять туристов в суборбитальные полёты на отстыковываемом модуле и ракете-носителе Armadillo. Принцип полёта идентичен доставке на МКС «Союзами», разница в том, что модуль с космотуристами лишь достигнет границы Космоса, после чего вернётся на Землю. Салон рассчитан на двух путешественников. Полёт будет автономным, контролируемым с Земли, из Центра управления полётами. В общей сложности погружение в Космос продлится примерно 1 час.

Предыдущая фотография 1/ 1 Следующая фотография

Виза в космос

Туристам для посещения космоса виза не требуется. Преодолеть земную гравитацию без лишних бюрократических проволочек может любой житель планеты Земля, независимо от гражданства. Между тем, старт космического путешествия производится с территории пока ещё не поборовших бюрократию государств Земли - поэтому для прибытия на «точку отрыва» необходимо получить визу соответствующей страны. На сегодняшний день космические туристы отправляются «бороздить просторы Большого театра» только с территории Российской Федерации (космодром Байконур фактически расположен в Казахстане, но до 2050 года находится в ведении России) - поэтому желающим стартовать по единственной работающей в настоящее время программе Space Adventures потребуется виза в Россию.

Россиянам виза «на отлёт», ясное дело, не требуется. Более того, для въезда на территорию Байконура не нужен даже заграничный паспорт – достаточно внутреннего российского. Правда, действует это правило, только если турист прибывает прямым рейсом Москва – Байконур.

Тем же, кто в недалёком будущем планирует отправиться в космическую Одиссею, воспользовавшись сервисом Virgin Galactic, понадобится виза в США - старты будут производиться с космопорта в штате Нью-Мексико.

Таможня

По сравнению с «таможенными правилами» для космических туристов даже личный досмотр подозрительных личностей в аэропорту Тель-Авива покажется детским лепетом. В Космос нельзя ввозить практически ничего: продукты питания, косметические средства, технику и электронику, биологические материалы, одежду и обувь - всё это непременно отберут перед отправкой на Гагаринский старт. Тем не менее, взять в путешествие на орбиту любимые трусы в цветочек и прочий «ностальгический товар» - книгу, фотографию или, как Ги Лалиберте, клоунский нос - вполне реально: предмет должен быть представлен на суд специальной комиссии, которая выдаст заключение о его безопасности и отправит на обработку до состояния полной стерильности.

Впечатления от полёта в космос - главная причина, по которой многие готовы расстаться с кругленькой суммой и пройти серьёзную, иногда невыносимую физподготовку.

Правила для суборбитальных путешественников пока не озвучены. По всей видимости, они будут ещё более либеральными: полёт краткий, всё необходимое предоставляет «туроператор», да и провести пару часов без обожаемой плюшевой собачки сможет даже самый сентиментальный космический турист.

Где остановиться

Международная космическая станция - это «всё в одном» для космических туристов: и гостиница, и ресторан, и достопримечательность. В программе МКС участвуют 15 стран мира, некоторые из них имеют собственные отдельные модули в составе станции. Космических туристов заселяют на Российский сегмент МКС - и это не тот случай, когда отель по овербукингу может быть заменён на другой. Пожалуй, полёт в Космос - это единственная туристическая поездка, в которой отдыхающему на 200 % гарантирован заранее определённый «номер».

Структурный центр Российского сегмента станции - модуль «Звезда». Именно в его не слишком просторных помещениях космическому туристу и предстоит провести десять незабываемых дней. Внутренний объём обитания членов экипажа (а это два профессиональных космонавта и один турист) - 46 кубометров. Здесь имеются все необходимые системы жизнеобеспечения человека на станции, энергоустановка, индивидуальные каюты (размещение «сингл», между прочим, хотя «гостиничный номер» по размерам больше напоминает неглубокий шкаф), фитнес-зал (!), кухня и столовая «два в одном», а также туалет - правда, один-единственный. Из плюсов - отсутствие тараканов, комаров, мышей и прочей портящей настроение на отдыхе живности, а также предварительное знакомство и почти полугодовое общение в Звёздном городке с будущими «сокамерниками» по отелю.

Итальянский модуль «Cupola», смонтированный со станцией в феврале 2010 г – смотровая площадка Космоса. Семь иллюминаторов, расположенных на скатах виртуального купола и в его маковке, позволяют насладиться видом, равных которому по красоте безо всякого преувеличения не существует. Толщина стёкол – 10 см.

О том, где в недалёком будущем смогут разместиться космические туристы, читайте на нашей странице Отели Космоса .

Безопасность космических туристов

Космос - зона повышенного риска: крайне разреженная атмосфера за бортом космического корабля, огромные перепады температуры, малая манёвренность МКС в среде космических скоростей, психологическое давление замкнутого пространства - всё это может превратить ничтожный инцидент в грозящую унести жизни катастрофу. Именно поэтому все материалы и оборудование на МКС имеют многократный запас прочности, и абсолютно для любой внештатной ситуации на борту имеется чёткий план действий.

Ошибкой было бы думать, что участие в программе космического туризма зависит исключительно от возможности выложить более чем внушительную сумму за возможность созерцать родную планету из космоса. Кандидаты в космотуристы проходят тщательный отбор по физическим данным и психологической устойчивости, обучаются по программе подготовки к полёту, проходят тренировки на невесомость и выживание - словом, почти в полном объёме выполняют обязательную программу для профессионального космонавта. Подготовка к экспедиции занимает от 6 до 9 месяцев. И несмотря на это, решение о допуске к полёту принимается непосредственно перед стартом, после тщательного медицинского осмотра.

Помимо того, что все системы человеческого организма в космосе работают в изменённом режиме, космонавты подвергаются значительной радиации: доза суточного облучения на орбите равна средней годовой на Земле. Другая опасность - значительное ослабление иммунитета. А вот биологическое старение на МКС течёт медленнее, чем на нашей планете.

По сравнению с «таможенными правилами» для космических туристов даже личный досмотр подозрительных личностей в аэропорту Тель-Авива покажется детским лепетом.

На чём передвигаться в Космосе

Вопрос передвижения по просторам Вселенной в рамках программ космического туризма пока скорее риторический. Космотуристы не покидают пределов МКС (за исключением планируемой возможности выхода в открытый космос), перемещаясь внутри неё благодаря отсутствию гравитации исключительным образом - «на своих четырёх».

«Суборбитальщики» также всё время путешествия находятся внутри космического корабля; их полёт - скорее продолжительный трансфер, нежели стандартная формула «перелёт-трансфер-наземка».

В дальнейшем, если состоится заявленный Space Adventures туристический облёт Луны и, не исключено, высадка человека на лунную поверхность, можно будет говорить о первом способе передвижения в Космосе - пешком. Уйти, правда, далеко не удастся, но совершить скромный променад по лунному грунту было бы по плечу даже туристу с низким уровнем физподготовки - из-за малой силы лунного притяжения.

That"s one small step for man, one giant leap for mankind.

Нил Армстронг

Климат космоса

Температура вблизи МКС, как и на Земле, целиком зависит от солнечных лучей. Если космическая станция находится позади планеты, в её тени, за бортом бывает до -150 °C. В прямой видимости Солнца термометр может показывать полярное значение - +150 °C. Внутри Международной космической станции поддерживается комфортная для космонавтов температура +23...25 °C. Дождей и снега, ясное дело, не бывает, и из «погодных» явлений можно выделить лишь пролетающие за иллюминатором обломки спутников и прочий космический мусор. Случается это не слишком часто (примерно, как земная радуга), и радость доставляет только космотуристам - космонавты в это время заняты рассчётами мусорной траектории и, при необходимости, запускают программу уклонения от обломков. Как вспоминает космонавт А. Скворцов, «однажды больше недели пришлось убегать от китайского спутника».

Другие важные составляющие прогноза погоды из Космоса - геомагнитная и солнечная активность, влияющие на самочувствие космонавтов и показатели приборов.

МКС живёт по Всемирному координированному времени (UTC). Время на космической станции отстаёт от московского на 3 часа.

Карты Космоса

Сувениры из космоса

Любой вещественный атрибут космической жизни станет прекрасным сувениром-напоминанием о звёздной Одиссее. Побывавшие на орбите космотуристы забирали на память упаковки космической еды - тушёнку «по спецзаказу», микробуханки хлеба, пироги в пакетиках, предметы гигиены, «орбитальные» футболки и другую одежду, а также отработавшие свой ресурс и заменённые на новые детали МКС. Кроме этого, мало кто из живущих на планете может похвастаться фотографиями себя любимого на фоне Земли или стыкующегося к станции корабля.

По правилам оказания услуг космического туризма все права на использование любых визуальных материалов, отснятых туристом в ходе полёта, принадлежат исключительно космическому туристу – так что можно не только поразить родственников «откопирайтленными» фотографиями, но и вернуть некоторую часть потраченных на поездку средств, потихоньку распродавая эксклюзив.

Как хорошо покушать в космосе

Мишленовских ресторанов в Космосе по понятным причинам нет, однако то, что предлагает спецпредприятие Звёздного городка вполне съедобно, разнообразно и даже вкусно. Одно из главных требований к космической еде - пищевая безопасность: никаких скоропортящихся компонентов и растительных составляющих, типа рубленой петрушки. В условиях повышенной радиации, магнитных полей и всяких инопланетных странностей не ровен час петрушка мутирует и позавтракает ценным космическим туристом - аккурат как в известном мультфильме: «поливать супом нельзя поливать водой». Помимо прочего, еда, предназначенная для космонавтов, стопроцентно натуральная и гарантированно не содержит нитратов и вездесущих ГМО. Большинство продуктов прибывают на орбиту в сублимированном виде, полностью обезвоженные, так что формула «просто добавь воды» актуальна не только для безразмерной быстропитовской лапши. А вот от стереотипных тюбиков уже отошли: есть и консервы, и блистеры, и вакуумные упаковки. Хлеб на МКС доставляется специальный бескрошевой. Буханки хватает ровно на один укус. По разнообразию блюд космический рацион почти не отличается от земного - те же первое-второе-третье: закуски, супы, горячие блюда с гарниром, каши, чай-кофе-молоко-соки, десерты и сухофрукты. Идя навстречу прихотям состоятельных космотуристов, «Роскосмос» позволяет брать на орбиту некоторые земные деликатесы (как-никак, деньги уплачены), разумеется, после специальной обработки. Рассказывают, правда, что любимый сыр Лалиберте не пропустили - уж больно он был, так скажем, биологически активным.

Из-за многомесячного существования в невесомости и в искусственном воздухе обоняние у космонавтов сильно притупляется, так что любой кусочек настоящей земной еды, прибывшей вместе с космическим туристом, дарит целую вселенную обонятельных впечатлений.

Развлечения и достопримечательности космоса

Земля голубая. Всё видно очень ясно.

Юрий Гагарин

Полёт как достопримечательность

Впечатления от полёта в космос - главная причина, по которой многие готовы расстаться с кругленькой суммой и пройти серьёзную, иногда невыносимую физподготовку. Первые ощущения от вида Земли, парящей в звёздной черноте, и космонавты, и космические туристы единогласно описывают как восторг, эйфорию. Будь то двухчасовой суборбитальный полёт или многодневное путешествие на Международную космическую станцию, каждая минута, прожитая в космосе, будет наполнена массой уникальных впечатлений - зрительных, тактильных, звуковых. Находясь в космосе, можно не только окинуть взглядом всю планету, но и наблюдать восход солнца, когда изгиб земного шара медленно разгорается голубой дымкой, чтобы затем вдруг вспыхнуть в сиянии показавшегося светила. А чего стоит вид всего комплекса МКС, особенно белоснежного на чёрном фоне Вселенной. Прибавьте к этому возможность увидеть извержения вулканов и песчаные бури Сахары, разглядеть в мощную оптику Пальму Джумейра или угадать среди безбрежного океана «ступню» Мадагаскара, сфотографировать ночную Москву или заметить крошечную точку на горизонте - космический грузовик «Прогресс», который пару дней назад стартовал с Земли и через несколько часов состыкуется со станцией.

Невесомость

Космос - это ещё и возможность испытать одно из самых удивительных телесных ощущений - невесомость. Отсутствие гравитации - это возможность выделывать любые акробатические фигуры без риска расшибиться, отлететь в противоположный угол «комнаты», лишь слегка оттолкнувшись мизинцем от стены, и повесить нужный предмет на воздух перед собой. Даже такое банальное занятие, как мытьё, на орбите становится уникальным опытом: вода не стекает с тела, а размазывается по его поверхности наподобие геля. Даже спать здесь ложатся, предварительно пристегнувшись - чтобы не отправиться в невольный полёт по станции, пошевелившись во сне.

Выход в открытый космос

Заявленная, но пока не осуществлённая «дополнительная наземка» в космическом путешествии - выход в открытый космос. Пройти дорогой Алексея Леонова теоретически сможет любой космический турист. Конечно, подготовка к полёту в этом случае займёт больше времени - ведь космотуристу нужно будет на отлично усвоить правила перемещения в открытом космосе, в совершенстве научиться управляться со скафандром и отработать действия в аварийных ситуациях. Зато незабываемых впечатлений гарантированно добавит: вне МКС царит абсолютная, ничем не нарушаемая, гулкая тишина и между человеком и Вселенной - лишь толщина скафандра. Впечатления оцениваются в дополнительные 15 млн USD.

Лунная миссия

Облёт Луны - ещё один заявленный проект в рамках коммерческих полётов в космос. После промежуточной «посадки» на Международную космическую станцию, туристам предлагается облететь в специальном модернизированном корабле вокруг спутницы Земли, своими глазами увидеть её загадочную тёмную сторону, после чего вернуться на родную планету. Непосредственно автономный полёт к Луне и обратно составит около 5 суток. Дата первой миссии пока не объявлена, как и стоимость путешествия.

Границы

Чёткой границы не существует, потому что атмосфера разрежается постепенно по мере удаления от земной поверхности, и до сих пор нет единого мнения, что считать фактором начала космоса. Если бы температура была постоянной, то давление бы изменялось по экспоненциальному закону от 100 кПа на уровне моря до нуля. Международная авиационная федерация в качестве рабочей границы между атмосферой и космосом установила высоту в 100 км (линия Кармана), потому что на этой высоте для создания подъёмной аэродинамической силы необходимо, чтобы летательный аппарат двигался с первой космической скоростью , из-за чего теряется смысл авиаполёта .

Солнечная система

В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд - примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.

Журнал «Aviation Week and Space Technology» 13 февраля 1995 г. опубликовал письмо, в котором рассказывалось об инциденте, произошедшем 16 августа 1960 года во время подъёма стратостата с открытой гондолой на высоту 19,5 миль для совершения рекордного прыжка с парашютом (Проект «Эксельсиор»). Правая рука пилота оказалась разгерметизирована, однако он решил продолжить подъём. Рука, как и можно было ожидать, испытывала крайне болезненные ощущения, и ею нельзя было пользоваться. Однако при возвращении пилота в более плотные слои атмосферы состояние руки вернулось в норму.

Границы на пути к космосу

  • Уровень моря - 101,3 кПа (1 атм .; 760 мм рт. ст;) атмосферного давления .
  • 4,7 км - МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
  • 5,0 км - 50% от атмосферного давления на уровне моря.
  • 5,3 км - половина всей массы атмосферы лежит ниже этой высоты.
  • 6 км - граница постоянного обитания человека.
  • 7 км - граница приспособляемости к длительному пребыванию.
  • 8,2 км - граница смерти.
  • 8,848 км - высочайшая точка Земли гора Эверест - предел доступности пешком.
  • 9 км - предел приспособляемости к кратковременному дыханию атмосферным воздухом.
  • 12 км - дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10-20 с); предел кратковременного дыхания чистым кислородом; потолок дозвуковых пассажирских лайнеров.
  • 15 км - дыхание чистым кислородом эквивалентно пребыванию в космосе.
  • 16 км - при нахождении в высотном костюме в кабине нужно дополнительное давление. Над головой осталось 10 % атмосферы.
  • 10-18 км - граница между тропосферой и стратосферой на разных широтах (тропопауза).
  • 19 км - яркость тёмно-фиолетового неба в зените 5% от яркости чистого синего неба на уровне моря (74,3-75 против 1500 свечей на м² ), днём могут быть видны самые яркие звёзды и планеты.
  • 19,3 км - начало космоса для организма человека - закипание воды при температуре человеческого тела. Внутренние телесные жидкости на этой высоте ещё не кипят, поскольку тело генерирует достаточно внутреннего давления, чтобы предотвратить этот эффект, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза.
  • 20 км - верхняя граница биосферы : предел подъёма в атмосферу спор и бактерий воздушными потоками.
  • 20 км - интенсивность первичной космической радиации начинает преобладать над вторичной (рождённой в атмосфере).
  • 20 км - потолок тепловых аэростатов (монгольфьеров) (19 811 м) .
  • 25 км - днём можно ориентироваться по ярким звёздам.
  • 25-26 км - максимальная высота установившегося полёта существующих реактивных самолётов (практический потолок).
  • 15-30 км - озоновый слой на разных широтах.
  • 34,668 км - рекорд высоты для воздушного шара (стратостата), управляемого двумя стратонавтами.
  • 35 км - начало космоса для воды или тройная точка воды : на этой высоте вода кипит при 0 °C, а выше не может находиться в жидком виде.
  • 37,65 км - рекорд высоты существующих турбореактивных самолётов (динамический потолок).
  • 38,48 км (52 000 шагов) - верхняя граница атмосферы в 11 веке : первое научное определение высоты атмосферы по продолжительности сумерек (араб. учёный Альгазен , 965-1039 гг.) .
  • 39 км - рекорд высоты стратостата, управляемого человеком (Red Bull Stratos).
  • 45 км - теоретический предел для прямоточного воздушно-реактивного самолёта.
  • 48 км - атмосфера не ослабляет ультрафиолетовые лучи Солнца.
  • 50 км - граница между стратосферой и мезосферой (стратопауза).
  • 51,82 км - рекорд высоты для газового беспилотного аэростата .
  • 55 км - атмосфера не воздействует на космическую радиацию.
  • 70 км - верхняя граница атмосферы в 1714 г. по расчёту Эдмунда Холли (Галлея) на основе данных альпинистов, законе Бойля и наблюдений за метеорами .
  • 80 км - граница между мезосферой и термосферой (мезопауза).
  • 80,45 км (50 миль) - официальная высота границы космоса в США .
  • 100 км - официальная международная граница между атмосферой и космосом - линия Кармана , определяющая границу между аэронавтикой и космонавтикой . Аэродинамические поверхности (крылья) начиная с этой высоты не имеют смысла, так как скорость полёта для создания подъёмной силы становится выше первой космической скорости и атмосферный летательный аппарат становится космическим спутником .
  • 100 км - зарегистрированная граница атмосферы в 1902 г. : открытие отражающего радиоволны ионизированного слоя Кеннелли - Хевисайда 90-120 км.
  • 118 км - переход от атмосферного ветра к потокам заряжённых частиц.
  • 122 км (400 000 футов) - первые заметные проявления атмосферы во время возвращения на Землю с орбиты: набегающий воздух начинает разворачивать Спейс Шаттл носом по ходу движения.
  • 120-130 км - спутник на круговой орбите с такой высотой сможет сделать не более одного оборота.
  • 200 км - наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
  • 320 км - зарегистрированная граница атмосферы в 1927 г. : открытие отражающего радиоволны слоя Эплтона .
  • 350 км - наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
  • 690 км - граница между термосферой и экзосферой .
  • 1000-1100 км - максимальная высота полярных сияний , последнее видимое с поверхности Земли проявление атмосферы (но обычно хорошо заметные сияния происходят на высотах 90-400 км).
  • 2000 км - атмосфера не оказывает воздействия на спутники и они могут существовать на орбите многие тысячелетия.
  • 36 000 км - считавшийся в первой половине 20-го века теоретический предел существования атмосферы. Если бы вся атмосфера равномерно вращалась вместе с Землёй, то с этой высоты на экваторе центробежная сила вращения будет превосходить над притяжением и частички воздуха, вышедшие за эту границу, будут разлетаться в разные стороны.
  • 930 000 км - радиус гравитационной сферы Земли и максимальная высота существования её спутников. Выше 930 000 км притяжение Солнца начинает преобладать и оно будет перетягивать поднявшиеся выше тела.
  • 21 миллион км - на таком расстоянии практически исчезает гравитационное воздействие Земли .
  • Несколько десятков миллиардов км - пределы дальнобойности солнечного ветра .
  • 15-20 триллионов км - гравитационные границы Солнечной системы, максимальная дальность существования планет.

Условия для выхода на орбиту Земли

Для того, чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:

  • Первая космическая скорость - 7.910 км/с
  • Вторая космическая скорость - 11.168 км/с
  • Третья космическая скорость - 16.67 км/с
  • Четвёртая космическая скорость - около 550 км/с

Если же какая-либо из скоростей будет меньше указаной, то тело не сможет выйти на орбиту. Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский .

См. также

Ссылки

  • Галерея фотографий, полученных при помощи телескопа Хаббл (англ.)

Примечания

Андрей Кисляков, для РИА Новости.

Казалось бы, не так уж и существенно, где заканчивается «Земля» и начинается космос. Между тем споры вокруг значения высоты, дальше которой уже простирается безграничное космическое пространство, не затихают уже почти столетие. Последние данные, полученные путем досконального изучения и обобщения в течение почти двух лет большого объема информации, позволили канадским ученым в первой половине апреля заявить о том, что космос начинается на высоте 118 км. С точки зрения влияния на Землю космической энергии это число весьма важно для климатологов и геофизиков.

С другой стороны, окончательно завершить этот спор, установив всем миром единую, устраивающую всех границу, вряд ли скоро удастся. Дело в том, что существует несколько параметров, которые считаются принципиальными для соответствующей оценки.

Немного истории. То, что за пределами земной атмосферы действует жесткое космическое излучение, было известно давно. Однако четко определить границы атмосферы, измерить силу электромагнитных потоков и получить их характеристики не удавалось до начала запусков искусственных спутников Земли. Между тем, основной космической задачей, как СССР, так и Соединенных Штатов в середине 50-х годов была подготовка пилотируемого полета. Это, в свою очередь, требовало ясных знаний относительно условий сразу за пределами земной атмосферы.

Уже на втором советском спутнике, запущенном в ноябре 1957 г., находились датчики для измерения солнечного ультрафиолетового, рентгеновского и других видов космического излучения. Принципиально важным для успешного осуществления пилотируемых полетов стало открытие в 1958 г. двух радиационных поясов вокруг Земли.

Но вернемся к установленным канадскими учеными из Университета Калгари 118 км. А почему, собственно, такая высота? Ведь, так называемая «линия Кармана», неофициально признанная границей между атмосферой и космосом, «проходит» по 100-километровой отметке. Именно там плотность воздуха уже столь мала, что летательный аппарат должен двигаться с первой космической скоростью (примерно 7,9 км/с) для предотвращения падения на Землю. Но в таком случае ему уже не требуются и аэродинамические поверхности (крыло, стабилизаторы). На основании этого Всемирная ассоциация аэронавтики приняла высоту 100 км в качестве водораздела между аэронавтикой и астронавтикой.

Но степень разреженности атмосферы - далеко не единственный параметр, определяющий границу космоса. Тем более что «земной воздух» на высоте 100 км не заканчивается. А как, скажем, меняется состояние того или иного вещества с увеличением высоты? Может это и есть главное, что определяет начало космоса? Американцы, в свою очередь, считают любого, кто побывал на высоте 80 км, истинным астронавтом.

В Канаде решили выявить значение параметра, который, как представляется, имеет значение для всей нашей планеты. Они решили выяснить, на какой высоте заканчивается влияние атмосферных ветров и начинается воздействие потоков космических частиц.

Для этой цели в Канаде разработали специальный прибор STII (Super - Thermal Ion Imager), который вывели на орбиту с космодрома на Аляске два года назад. С его помощью и было установлено, что граница между атмосферой и космосом расположена на высоте 118 километров над уровнем моря.

При этом сбор данных длился всего лишь пять минут, пока несущий его спутник поднимался на установленную для него высоту в 200 км. Таков единственный способ собрать информацию, поскольку эта отметка находится слишком высоко для стратосферных зондов и слишком низко для исследования со спутников. Впервые при исследовании были учтены все составляющие, в том числе движение воздуха в самых верхних слоях атмосферы.

Приборы, подобные STII, появятся для продолжения исследований приграничных областей космоса и атмосферы в качестве полезного груза на спутниках Европейского космического агентства, срок активного существования которых составит четыре года. Это важно, т.к. продолжение исследований пограничных регионов позволит узнать много новых фактов о воздействии космического излучения на климат Земли, о том, какое воздействие энергия ионов имеет на окружающую нас среду.

Изменение интенсивности солнечной радиации, напрямую связанное с появлением пятен на нашем светиле, каким-то образом влияет на температуру атмосферы, и последователи аппарата STII могут быть использованы для обнаружения этого влияния. Уже сегодня в Калгари разработали 12 различных анализирующих устройств, предназначенных для изучения различных параметров ближнего космоса.

Но говорить о том, что начало космоса ограничили 118 км не приходится. Ведь со своей стороны правы и те, кто считает настоящим космосом высоту в 21 миллион километров! Именно там практически исчезает воздействие гравитационного поля Земли. Что ждет исследователей на такой космической глубине? Ведь дальше Луны (384 000 км) мы не забирались.