Инерциальными системами отсчета называют такие системы, относительно которых все тела, не испытывающие действия сил, движутся равномерно и прямолинейно .

Если какая-либо система отсчета движется относительно инерциальной системы поступательно, но не прямолинейно и равномерно, а с ускорением или же вращаясь, то такая система не может быть инерциальной и закон инерции в ней не выполняется.

Во всех инерциальных системах отсчета все механические и физические процессы протекают совершенно одинаково (при одинаковых условиях).

Согласно принципу относительности, все инерциальные системы отсчета равноправны и все проявления законов физики в них выглядят одинаково, а записи этих законов в разных инерциальных системах отсчета имеют одинаковую форму.

Если в изотропном пространстве существует хотя бы одна инерциальная система отсчета , приходим к выводу, что существует бесконечное множество таких систем, движущихся друг относительно друга поступательно, равномерно и прямолинейно. Если инерциальные системы отсчета существуют, то пространство однородно и изотропно, а время - однородно.

Законы Ньютона и другие законы динамики выполняются только в инерциальных системах отсчета .

Рассмотрим пример инерциальной и неинерциальной систем. Возьмем тележку, на которой находятся два шарика. Один из них лежит на горизонтальной поверхности, а другой подвешен на нити. Сначала тележка движется относительно Земли прямолинейно и равномерно (а ). Силы, действующие на каждый шарик по вертикали, уравновешены, а по горизонтали на шарики никакие силы не действуют (силу сопротивления воздуха можно проигнорировать).

При любой скорости движения тележки относительно земли (υ 1 , υ 2 , υ 3 и т.д.) шарики будут находиться в покое относительно тележки, главное, чтобы скорость была постоянной.

Однако, когда тележка наедет на песчаную насыпь (б ), ее скорость начнет быстро уменьшаться, в результате чего тележка остановится. Во время торможения тележки оба шарика придут в движение - изменят свою скорость относительно тележки, хотя их никакие силы не толкают.

В этом примере первой (условно неподвижной) системой отсчета является Земля. Вторая система отсчета, движущаяся относительно первой - тележка. Пока тележка двигалась равномерно и прямолинейно, шарики находились в покое относительно тележки, т. е. выполнялся закон инерции. Как только тележка стала тормозить, т. е. начала двигаться с ускорением относительно инерциальной (первой) системы отсчета, закон инерции перестал выполняться.

Строго инерциальной системы отсчета нет. Реальная система отсчета всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается различных объектов. Все реальные тела движутся с каким-либо ускорением, следовательно любая реальная система отсчета может рассматриваться в качестве инерциальной лишь приближенно.

Инерциальной системой с очень высокой степенью точности считается гелиоцентрическая система, связанная с центром Солнца и координатными осями, направленными на три далекие звезды. Эту систему используют в задачах небесной механики и космонавтики. В большинстве технических задач инерциальной системой отсчета считают любую систему, жестко связанную с землей (или любым телом, которое покоится или движется прямолинейно и равномерно относительно поверхности Земли).

Общий курс физики

Введение.

Физика (греч., от physis – природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира (закономерности явлений природы, свойства и строение материи и законы её движения). Понятия физики и её законы лежат в основе всего естествознания. Физика относится к точным наукам и изучает количественные закономерности явлений. Поэтому, естественно, языком физики является математика.

Материя может существовать в двух основных формах: вещество и поле. Они взаимосвязаны между собой.

Примеры: Вещество твердые тела, жидкости, плазма, молекулы, атомы, элементарные частицы и т.д.

Поле – электромагнитное поле (кванты (порции) поля – фотоны);

гравитационное поле (кванты поля – гравитоны).

Взаимосвязь вещества и поля – аннигиляция электронно-позитронной пары.

Физика безусловно является мировоззренческой наукой, а знание её основ – необходимый элемент любого образования, культуры современного человека.

В тоже время физика имеет огромное прикладное значение. Именно ей обязано абсолютное большинство технических, информационных и коммуникационных достижений человечества.

Более того, последние десятилетия физические методы исследования находят все большее применение в, казалось бы, далеких от физики науках, таких как социология и экономика.

Классическая механика.

Механика – раздел физики, в котором изучается простейшая форма движения материи – перемещение тел в пространстве и времени.

Изначально основные принципы (законы) механики как науки были сформулированы И. Ньютоном в виде трех законов, получивших его имя.

Используя векторный способ описания, скорость можно определить как производную от радиус-вектора точки или тела , а масса выступает здесь в качестве коэффициента пропорциональности.

  1. При взаимодействии двух тел каждое из них действует на другое тело с одинаковой по значению, но противоположной по направлению силой.

Эти законы проистекают из опыта. На них построена вся классическая механика. Долгое время считалось, что все наблюдаемые явления могут быть описаны этими законами. Однако с течением времени расширялись границы человеческих возможностей, и опыт показал, что законы Ньютона справедливы не всегда, а классическая механика, как следствие, имеет определенные границы применимости.

Кроме того, несколько позже мы обратимся к классической механике с несколько другой стороны – исходя из законов сохранения, которые в некотором смысле являются более общими законами физики, чем законы Ньютона.

1.2. Границы применимости классической механики.

Первое ограничение связано со скоростями рассматриваемых объектов. Опыт показал, что законы Ньютона остаются справедливыми только при условии , где скорость света в вакууме (). При этих скоростях линейные масштабы и промежутки времени не изменяются при переходе от одной системы отсчета к другой. Поэтому пространство и время абсолютны в классической механике.

Итак, классическая механика описывает движение с малыми относительными скоростями, т.е. это нерелятивистская физика. Ограничение со стороны больших скоростей – первое ограничение применения классической механики Ньютона.

Кроме того, опыт показывает, что применение законов ньютоновской механики неправомерно к описанию микрообъектов: молекул, атомов, ядер, элементарных частиц и т.д. Начиная с размеров

(), адекватное описание наблюдаемых явлений дают другие


законы – квантовые . Именно их необходимо использовать, когда характерная величина, описывающая систему и имеющая размерность , сравнима по порядку с постоянной Планка Скажем, для электрона, находящегося в атоме, имеем . Тогда величина, имеющая размерность момента импульса, равна: .

Любое физическое явление – это последовательность событий . Событием называется то, что происходит в данной точке пространства в данный момент времени.

Для описания событий вводятся пространство и время – категории, обозначающие основные формы существования материи. Пространство выражает порядок существования отдельных объектов, а время – порядок смены явлений. Пространство и время необходимо разметить. Разметка осуществляется путем введения тел отсчета и реперных (масштабных) тел.

Системы отсчета. Инерциальные системы отсчета.

Для описания движения тела или используемой модели – материальной точки может быть применен векторный способ описания, когда положение интересующего нас объекта задают с помощью радиус-вектора отрезка, направленного от тела отсчета в интересующую нас точку, положение которой в пространстве может изменяться со временем. Геометрическое место концов радиус-вектора называют траекторией движущейся точки.

2.1. Системы координат .

Другим способом описания движения тела является координатный , в котором с телом отсчета жестко связывают определенную систему координат.

В механике, и в физике вообще, в разных задачах удобно пользоваться различными системами координат. Наиболее часто используются, так называемые, декартова, цилиндрическая и сферическая системы координат.

1) Декартова система координат : вводятся три взаимно перпендикулярных оси с заданными масштабами по всем трем осям (линейки). Начало отсчета по всем осям берется от тела отсчета. Пределы изменения каждой из координат от до .

Радиус-вектор, задающий положение точки, определяется через её координаты как

. (2.1)

Малый объем в декартовой системе:

,

или в бесконечно малых приращениях:

(2.2)

2) Цилиндрическая система координат : в качестве переменных выбираются расстояние от оси , угол поворота от оси x и высота вдоль оси от тела отсчета.


3) Сферическая система координат : вводится расстояние от тела отсчета до интересующей точки и углы

поворота и , отсчитываемые от осей и , соответственно.

Радиус-вектор – функция переменных

,

пределы изменения координат:

Декартовы координаты связаны со сферическими следующими соотношениями

(2.6)

Элемент объема в сферических координатах:

(2.7)

2.2. Система отсчета .

Для построения системы отсчета жестко связанную с телом отсчета систему координат необходимо дополнить часами. Часы могут находиться в различных точках пространства, поэтому их нужно синхронизовать. Синхронизация часов производится с помощью сигналов. Пусть время распространения сигнала из точки, где произошло событие, до точки наблюдения равно . Тогда наши часы должны в момент появления сигнала показывать время , если часы в точке события в момент его наступления показывают время . Такие часы будем считать синхронизированными.

Если расстояние от точки пространства, где произошло событие, до точки наблюдения , а скорость передачи сигнала , то . В классической механике принимается, что скорость распространения сигнала . Поэтому вводятся одни часы во всем пространстве.

Совокупность тела отсчета, системы координат и часов образуют Систему отсчета (СО).

Имеется бесконечное множество систем отсчета. Опыт дает, что пока скорости невелики по сравнению со скоростью света , линейные масштабы и промежутки временине изменяются при переходе из одной системы отсчета в другую.

Иначе говоря, в классической механике пространство и время абсолютны .

Если , то масштабы и интервалы времени зависят от выбора СО, т.е. пространство и время становятся понятиями относительными. Это уже область релятивистской механики .

2.3. Инерциальные системы отсчета (ИСО).

Итак, мы стоим перед выбором системы отсчета, в которой могли бы решать задачи механики (описывать движение тел и устанавливать причины, его вызывающие). Выясняется, что далеко не все системы отсчета равноправны не только при формальном описании задачи, но, что гораздо важнее, по-разному представляют причины, вызывающие изменение состояние тела.

Систему отсчета, в которой законы механики формулируются наиболее просто, позволяет установить первый закон Ньютона, который постулирует существование инерциальных систем отсчета – ИСО.

I закон классической механики – закон инерции Галилея-Ньютона .

Существует такая система отсчета, в которой материальная точка, если исключить её взаимодействие со всеми остальными телами, будет двигаться по инерции, т.е. сохранять состояние покоя или равномерного прямолинейного движения.

Это – инерциальная система отсчета (ИСО).

В ИСО изменение движения материальной точки (ускорение) обусловлено только её взаимодействием с другими телами, но не зависит от свойств самой системы отсчета.

Первый закон механики, или закон инерции (инерция – это свойство тел сохранять свою скорость при отсутствии действия на него других тел), как его часто называют, был установлен еще Галилеем. Но строгую формулировку этого закона дал и включил его в число основных законов механики Ньютон. Закон инерции относится к самому простому случаю движения – движению тела, на которое не оказывают воздействия другие тела. Такие тела называются свободными телами.

Ответить на вопрос, как движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо создать для тела условия, при которых влияние внешних воздействий можно делать все меньшим и меньшим, и наблюдать, к чему это ведет. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к земле уравновешивается действием поверхности, на которую он опирается, и на скорость его движения влияет только трение.) При этом легко обнаружить, что чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, заметно не меняя скорость. Трение можно уменьшить до минимума с помощью воздушной подушки – струй воздуха, поддерживающих тело над твердой поверхностью, вдоль которой происходит движение. Этот принцип используется в водном транспорте (суда на воздушной подушке). На основе подобных наблюдений можно заключить: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу впервые пришел Галилей.

С другой стороны, нетрудно заметить, что, когда скорость тела меняется, всегда обнаруживается воздействие на него других тел. Отсюда можно прийти к выводу, что тело, достаточно удаленное от других тел и по этой причине не взаимодействующее с ними, движется с постоянной скоростью .

Движение относительно, поэтому имеет смысл говорить лишь о движении тела по отношению к системе отсчета, связанной с другим телом. Сразу же возникает вопрос: будет ли свободное тело двигаться с постоянной скоростью по отношению к любому другому телу? Ответ, конечно, отрицательный. Так, если по отношению к Земле свободное тело движется прямолинейно и равномерно, то по отношению к вращающейся карусели тело заведомо так двигаться не будет.

Наблюдения за движениями тел и размышления о характере этих движений приводят нас к заключению о том, что свободные тела движутся с постоянной скоростью, по крайней мере, по отношению к определенным телам и связанным с ними системам отсчета. Например, по отношению к Земле. В этом состоит главное содержание закона инерции.

Поэтому первый закон Ньютона может быть сформулирован так:

существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Инерциальная система отсчета

Первый закон Ньютона утверждает (это с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.

Системы отсчета , в которых выполняется первый закон Ньютона, называют инерциальными .

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

Инерциальных систем существует бесконечное множество. Система от-счета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т.е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

Инерциальными являются системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета .

Галилей установил, что никакими механическими опытами, поставлен-ными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно . Это утверждение носит название принципа относительности Галилея или механического принципа относительности .

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).

Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальным и .

К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1). Рис. 2

Литература

  1. Открытая физика 2.5 (http://college.ru/physics/)
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Первый закон Ньютона (закон инерции)

Существуют системы отсчета, называемые инерциальными (далее $-$ ИСО), в которых любое тело находится в состоянии покоя или движется равномерно и прямолинейно, если на него не действуют другие тела или действие этих тел скомпенсировано. В таких системах тело будет сохранять первоначальное состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не заставит его изменить это состояние.

ИСО $-$ особый класс систем отсчета, в которых ускорения тел обусловлены только реальными силами, действующими на тела, а не свойствами систем отсчета. Как следствие, если на тело не действуют никакие силы или их действие скомпенсировано $\vec{R_{}}=\vec{F_1}+\vec{F_2}+\vec{F_3}+…=\vec{0_{}}$, то тело либо не изменяет свою скорость $\vec{V_{}}=\vec{const}$ и движется равномерно прямолинейно либо покоится $\vec{V_{}}=\vec{0_{}}$.

Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все ИСО образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных ИСО одинаковы.

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т. е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

Инерциальными являются и системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея, или механического принципа относительности .

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. ИСО играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в каждой ИСО.

Неинерциальная система отсчета $-$ система осчета, не являющаяся инерциальной. В этих системах не работает свойство, описанное в законе инерции. По сути, всякая система отсчета, двигающаяся относительно инерциальной с ускорением, будет являться неинерциальной.