Магнитные свойства вещества

2. Диа- и парамагнетики.

1. Магнитное поле вещества. Гипотеза Ампера.

Опыты показывают, что все вещества, помещённые в магнитное поле, намагничиваются и сами становятся источниками дополнительного магнитного поля.

Магнетики – вещества, способные намагничиваться в магнитном поле.

Для объяснения намагничивания тел Ампер предположил (гипотеза Ампера ), что в молекулах вещества циркулируют круговые токи. Эти токи возникают при движении электронов по орбитам вокруг ядер атомов и создают собственное магнитное поле. Внешнее магнитное поле оказывает на них ориентирующее действие.

Действие внешнего магнитного поля на элементарный ток определяется магнитным моментом тока :

, , (1)

где – сила элементарного тока, – площадь, обтекаемая током, а – вектор нормали к ней. Вектор перпендикулярен к плоскости элементарного тока.

В отсутствие внешнего магнитного поля элементарные токи, а, следовательно, и их магнитные моменты, расположены беспорядочно. Такое вещество не создаёт дополнительное магнитное поле:

Если вещество поместить во внешнее магнитное поле , то магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении. Вещество приобретает некоторый суммарный магнитный момент (намагничивается) и создаёт в пространстве дополнительное магнитное поле .

Внешнее и дополнительное поля в сумме дают результирующее поле:

В качестве характеристики степени намагничивания магнетика применяется вектор намагничивания.

Вектором намагничивания , данного вещества называют магнитный момент единицы объема:

где – магнитный момент отдельной молекулы, а суммирование ведётся по всем молекулам в объёме V .

Единица измерения вектора намагничивания:

,

что совпадает с единицей напряжённости магнитного поля .

Опыт показывает, что вектор намагничивания в изотропных средах пропорционален вектору напряжённости магнитного поля:

где безразмерная величина называется магнитной восприимчивостью вещества .

Индукция и напряжённость внешнего магнитного поля связаны равенством: . Расчёты показывают, что напряжённость дополнительного магнитного поля равна вектору намагничивания : . Следовательно, для индукции дополнительного магнитного поля имеем:

Тогда формула (2) примет вид:

Используя (4), получим:

Безразмерная величина

представляет собой магнитную проницаемость вещества . Подставив (6) в (5), придём к соотношению

которое ранее нами постулировалось.

Формула (6) связывает две характеристики магнетиков: магнитную проницаемость и магнитную восприимчивость.

2. Диа- и парамагнетики.

Все вещества по характеру намагничивания делятся на три класса – диамагнетики , парамагнетики и ферромагнетики .

Диамагнетики – вещества с отрицательной восприимчивостью и соответственно с магнитной проницаемостью .

К ним относятся : водород, вода, стекло, цинк, серебро, золото, медь, висмут.

Так как у диамагнетиков , то из формулы (4) следует, что дополнительное магнитное поле по направлению противоположно внешнему и результирующее магнитное поле незначительно ослабляется .

При внесении диамагнетика в магнитное поле, он выталкивается из области наибольшей напряжённости и устанавливается перпендикулярно силовым линиям.

Атомы диамагнетиков при отсутствии внешнего магнитного поля собственным магнитным моментом не обладают. Под действием внешнего магнитного поля атомы приобретают индуцированный (наведённый) магнитный момент, противоположный полю.

Парамагнетики – вещества с положительной восприимчивостью и магнитной проницаемостью .

К ним относятся : азот, кислород, воздух, эбонит, алюминий, вольфрам, платина.

В парамагнетиках дополнительное магнитное поле совпадает по направлению с внешним, так как , и результирующее магнитное поле незначительно увеличивается .

При внесении парамагнетика в магнитное поле, он втягивается в область большей напряжённости и устанавливается вдоль силовых линий.

Атомы парамагнетиков обладают собственным магнитным моментом при отсутствии внешнего поля, причём эти моменты ориентированы совершенно беспорядочно. При наличии внешнего поля возникает некоторое упорядоченное расположение магнитных моментов вдоль поля.

Абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (), поэтому для них магнитная проницаемость незначительно отличается от единицы. Диа- и парамагнетики называют слабомагнитными веществами .

3. Ферромагнетики. Гистерезис.

Ферромагнетики – сильномагнитные вещества, у которых магнитная проницаемость значительно больше 1 и достигает значений порядка (.

К ним относятся : железо, кобальт, никель, некоторые редкоземельные металлы, большое количество сплавов.

Зависимость магнитной проницаемости от напряжённости внешнего магнитного поля .

Зависимость вектора намагничивания от напряжённости внешнего магнитного поля .

Зависимость индукции магнитного поля от напряжённости внешнего магнитного поля .

Важнейшей особенностью ферромагнетиков является наличие у них свойства гистерезиса (отставания).

Явление гистерезиса состоит в несовпадении кривых намагничивания и размагничивания ферромагнетика.

При уменьшении индукции внешнего магнитного поля до нуля намагничивание не исчезает, оно характеризуется остаточной индукцией B ос .

Коэрцитивная (задерживающая) сила – величина индукции противоположного поля (отрезок ОС ), необходимая для ликвидации остаточного намагничивания.

Ферромагнетик с большой коэрцитивной силой называется жёстким , а с малой коэрцитивной силой – мягким .

Магнитострикция – деформация ферромагнетиков при намагничивании.

Все ферромагнетики при нагревании теряют свои особые магнитные свойства и становятся парамагнетиками.

Температура Кюри – температура перехода из ферромагнитного состояния в парамагнитное.

Температура Кюри: 770 º С (железо);

1150 º С (кобальт);

360 º С (никель).

В ферромагнетиках ниже температуры Кюри имеются целые намагниченные области – домены , размеры которых достигают . Внешнее магнитное поле, действующее на ферромагнетики, ориентирует магнитные моменты доменов.

Когда векторы магнитных моментов всех доменов устанавливаются параллельно внешнему магнитному полю, наступает магнитное насыщение .

Контрольные вопросы

1. Какие вещества называют магнетиками?

2. Сформулируйте гипотезу Ампера.

3. Дайте определения магнитной проницаемости и магнитной восприимчивости вещества. Запишите соотношение между этими величинами.

4. Что такое диамагнетики? парамагнетики? В чем различие их магнитных свойств?

5. Какие вещества называют ферромагнетиками?

6. Объясните петлю гистерезиса ферромагнетика. Что такое магнитострикция?

7. Какую температуру для ферромагнетика называют температурой Кюри?

8. Каков механизм намагничения ферромагнетиков?

Всякое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). По величине и направлению этого момента, а также по причинам, его породившим, все вещества делятся на группы. Основные из них – диа- и парамагнетики.

Молекулы диамагнетика собственного магнитного момента не имеют. Он возникает у них только под действием внешнего магнитного поля и направлен против него. Таким образом, результирующее магнитное поле в диамагнетике меньше, чем внешнее поле, правда, на очень малую величину. Это приводит к тому, что при помещении диамагнетика в неоднородное магнитное поле он стремится сместиться в ту область, где напряжение магнитного поля меньше.

Молекулы (или атомы) парамагнетика имеют собственные магнитные моменты, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. Так, например, жидкий кислород - парамагнетик, он притягивается к магниту.

Магнитная проницаемость конкретного вещества зависит от многих факторов: напряженности магнитного поля, формы рассматриваемого поля (так как конечные размеры любого магнетика приводят к появлению встречного поля, уменьшающего первоначальное), температуры, частоты изменения магнитного поля, наличия дефектов структуры и т.д.

Существует ряд веществ, в которых квантовые эффекты межатомных взаимодействий приводят к появлению специфических магнитных свойств.

Наиболее интересное свойство - ферромагнетизм. Оно характерно для группы веществ в твердом кристаллическом состоянии (ферромагнетиков), характеризующихся параллельной ориентацией магнитных моментов атомных носителей магнетизма.

Параллельная ориентация магнитных моментов существует в довольно больших участках вещества - доменах. Суммарные магнитные моменты отдельных доменов имеют очень большую величину, однако сами домены обычно ориентированы в веществе хаотично. При наложении магнитного поля происходит ориентация доменов, что приводит к возникновению суммарного магнитного момента у всего объема ферромагнетика, и, как следствие, к его намагничиванию.

Естественно, что ферромагнетики, как и парамагнетики, перемещаются в ту точку поля, где напряженность максимальная (втягиваются в магнитное поле). Из-за большой величины магнитной проницаемости сила, действующая на них, гораздо больше.

Существование доменов в ферромагнетиках возможны только ниже определенной температуры (точка Кюри). Выше точки Кюри тепловое движение нарушает упорядоченную структуру доменов и ферромагнетик становится обычным парамагнетиком.

Диапазон температур Кюри для ферромагнетиков очень широк: у радолиния температура Кюри 20 0 C, для чистого железа - 1043 К. Практически всегда можно подобрать вещество с нужной температурой Кюри.

При понижении температуры все парамагнетики, кроме тех, у которых парамагнетизм обусловлен электронами проводимости, переходят либо в ферромагнитное, либо в антиферромагнитное состояние.

У некоторых веществ (хром, марганец) собственные магнитные моменты электронов ориентированы антипараллельно (навстречу) друг другу. Такая ориентация охватывает соседние атомы, и их магнитные моменты компенсируют друг друга. В результате антиферромагнетики обладают крайне малой магнитной восприимчивостью и ведут себя как очень слабые парамагнетики.

Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называется антиферромагнитной точкой Кюри или точкой Нееля.

У некоторых ферромагнетиков (эрбин, диоброзин, сплавов марганца и меди) таких температур две (верхняя и нижняя точка Нееля), причем антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетик, а при температурах, меньших нижней точки Нееля, становится ферромагнетиком.

Необратимое изменение намагниченности ферромагнитного образца, находящегося в слабом постоянном магнитном поле, при циклическом изменении температуры называется температурным магнитным гистерезисом. Наблюдается два вида гистерезиса, вызванных изменением доменной и кристаллической структуры. Во втором случае точка Кюри при нагреве лежит выше, чем при охлаждении.

Ферримагнетизм - (или антиферромагнетизм нескомпенсированный) совокупность магнитных свойств веществ (ферромагнетиков) в твердом состоянии, обусловленных наличием внутри тела межэлектронного обменного взаимодействия, стремящегося создать антипараллельную ориентацию соседних атомных магнитных моментов. В отличие от антиферромагнетиков, соседние противоположно направленные магнитные моменты в силу каких-либо причин не полностью компенсируют друг друга. Поведение ферримагнетика во внешнем поле во многом аналогично ферромагнетику, но температурная зависимость свойств имеет иной вид: иногда существует точка компенсации суммарного магнитного момента при температуре ниже точки Нееля. По электрическим свойствам ферромагнетики - диэлектрики или полупроводники.

Суперпарамагнетизм - квазипарамагнитное поведение систем, состоящих из совокупности экстремально малых ферро- или ферримагнитных частиц. Частицы этих веществ при определенно малых размерах переходят в однодоменное состояние с однородной самопроизвольной намагниченностью по всему объему частицы. Совокупность таких веществ ведет себя по отношению к воздействию внешнего магнитного поля и температуры подобно парамагнитному газу (сплавы меди с кобальтом, тонкие порошки никеля и т.д.).

Очень малые частицы антиферромагнетиков также обладают особыми свойствами, похожими на суперпарамагнетизм, поскольку в них происходит нарушение полной компенсации магнитных моментов. Аналогичными свойствами обладают и тонкие ферромагнитные пленки.

Суперпарамагнетизм применяется в тонких структурных исследованиях, в методах неразрушающего определения размеров, форм, количества и состава магнитной фазы и т.п.

Пьезомагнетики - вещества, у которых при наложении упругих напряжений возникает спонтанный магнитный эффект, пропорциональный первой степени величины напряжений. Этот эффект весьма мал и легче всего его обнаружить в антиферромагнетиках.

Магнитоэлектрики - вещества, у которых при помещении их в электрическое поле возникает магнитный момент, пропорциональный значению поля.

Магнитными свойствами обладают в той или иной мере все материалы, так как эти свойства являются отражением структурных закономерностей, присущих веществу на микроуровне. Особенности структуры обусловливают различия в магнитных свойствах веществ, то есть в характере их взаимодействия с магнитным полем.

Строение вещества и магнетизм

Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.

Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.

Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.

Поведение вещества в магнитном поле

При действии внешнего магнитного поля векторы магнитных моментов частиц изменяют направление – тело намагничивается, в нем появляется собственное магнитное поле. Характер этого изменения и его интенсивность, определяющие магнитные свойства веществ, обусловлены различными факторами:

  • особенности структуры электронных оболочек в атомах и молекулах вещества;
  • межатомные и межмолекулярные взаимодействия;
  • особенности структуры кристаллических решеток (анизотропия);
  • температура вещества;
  • напряженность и конфигурация магнитного поля и так далее.

Намагниченность вещества пропорциональна напряженности магнитного поля в нем. Их соотношение определяется особым коэффициентом – магнитной восприимчивостью. У вакуума она равна нулю, у некоторых веществ отрицательна.

Величину, характеризующую соотношение магнитной индукции и напряженности поля в веществе, принято называть магнитной проницаемостью. В вакууме индукция и напряженность совпадают, и проницаемость его равна единице. Магнитную проницаемость вещества можно выражать как относительную величину. Это соотношение абсолютных значений ее для данного вещества и для вакуума (последняя величина принята в качестве магнитной постоянной).

Классификация веществ по магнитным свойствам

По типу поведения различных твердых материалов, жидкостей, газов в магнитном поле выделяют несколько групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • ферримагнетики;
  • антиферромагнетики.

Основные магнитные характеристики вещества, лежащие в основе классификации – это магнитная восприимчивость и магнитная проницаемость. Охарактеризуем основные свойства, присущие каждой группе.


Диамагнетики

В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.

Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.

Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.

Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.

Парамагнетики

Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.


В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.

Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.

К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.

Ферромагнетики

Существует небольшая группа веществ, которые благодаря особенностям структуры обладают очень высокими магнитными свойствами. Первым металлом, у которого обнаружились эти качества, было железо, и благодаря ему данная группа получила наименование ферромагнетиков.


Строение ферромагнетиков характеризуется наличием особых структур – доменов. Это области, где намагниченность образуется спонтанно. Благодаря особенностям межатомного и межмолекулярного взаимодействия у ферромагнетиков устанавливается наиболее энергетически выгодное расположение атомных и электронных магнитных моментов. Они приобретают параллельную направленность по так называемым направлениям легкого намагничивания. Однако весь объем, например, кристалла железа не может приобрести однонаправленную самопроизвольную намагниченность – это повышало бы общую энергию системы. Поэтому система разбивается на участки, спонтанная намагниченность которых в ферромагнитном теле компенсирует друг друга. Так образуются домены.

Магнитная восприимчивость ферромагнетиков чрезвычайно велика, может составлять от нескольких десятков до сотен тысяч и в большой степени зависит от напряженности внешнего поля. Причина этого заключается в том, что ориентация доменов по направлению поля также оказывается энергетически выгодной. Направление вектора намагниченности части доменов обязательно совпадет с вектором напряженности поля, и энергия их будет наименьшей. Такие области разрастаются, и одновременно сокращаются невыгодно ориентированные домены. Намагниченность увеличивается, и нарастает магнитная индукция. Процесс происходит неравномерно, и график связи индукции с напряженностью внешнего поля называют кривой намагничивания ферромагнитного вещества.

При повышении температуры до некоторой пороговой величины, называемой точкой Кюри, доменное строение вследствие усиления теплового движения нарушается. В этих условиях ферромагнетик проявляет парамагнитные качества.

Помимо железа и стали, ферромагнитные свойства присущи кобальту и никелю, некоторым сплавам и редкоземельным металлам.

Ферримагнетики и антиферромагнетики

Двум видам магнетиков также свойственна доменная структура, но магнитные моменты в них ориентируются антипараллельно. Это такие группы, как:

  • Антиферромагнетики. Магнитные моменты доменов в этих веществах равны по численному значению и взаимно скомпенсированы. По этой причине магнитные свойства материалов антиферромагнетиков характеризуются крайне низкой магнитной восприимчивостью. Во внешнем поле они проявляют себя как очень слабые парамагнетики. Выше пороговой температуры, называемой точкой Нееля, такое вещество становится обычным парамагнетиком. Антиферромагнетиками являются хром, марганец, некоторые редкоземельные металлы, актиноиды. Некоторые антиферромагнитные сплавы имеют две точки Нееля. Когда температура меньше нижнего порога, материал становится ферромагнитным.
  • Ферримагнетики. У веществ этого класса величины магнитных моментов разных структурных единиц не равны, благодаря чему не происходит их взаимной компенсации. Магнитная восприимчивость их зависит от температуры и напряженности намагничивающего поля. К ферримагнетикам относятся ферриты, в состав которых входит оксид железа.

Понятие о гистерезисе. Постоянный магнетизм

Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.

Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.


Магнитная твердость и мягкость

Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.

В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.

Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.

Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.

Еще немного об использовании магнитных материалов

Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.


Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.

Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.

Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, то есть намагничиваются, и поэтому в некоторой мере изменяют внешнее (первоначальное) поле. Магнетиками называют все вещества при рассмотрении их магнитных свойств. При этом оказывается, что одни вещества ослабляют внешнее поле, а другие - усиливают его; первые называются диамагнитными, вторые - парамагнитными веществами, или, короче, диамагнетиками и парамагнетиками. Ферромагнетиками называют вещества, вызывающие очень большое усилие внешнего поля (кристаллическое железо, никель, кобальт, гадолиний и дисирозий, а также некоторые сплавы и окислы этих металлов и некоторые сплавы марганца и хрома).

Подавляющее большинство веществ относится к диамагнетикам. Диамагнетиками являются такие элементы как фосфор, сера, сурьма, углерод, многие металлы (висмут, ртуть, золото, серебро, медь и др.), большинство химических соединений (вода, почти все органические соединения). К парамагнетикам относятся некоторые газы (кислород, азот) и металлы (алюминий, вольфрам, платина, щелочные и щелочноземельные металлы).

У диамагнитных веществ суммарный магнитный момент атома (молекулы) равен нулю, так как имеющиеся в атоме орбитальные, спиновые и ядерные магнитные моменты взаимно компенсируются. Однако под влияним внешнего магнитного поля у этих атомов возникает (индуцируется) магнитный момент, направленный всегда противоположно внешнему полю. В результате диамагнитная среда намагничиваеся и создает собственное магнитное поле, направленное противоположно внешнему полю и поэтому ослабляющее его (рисунок).

Индуцированные магнитные моменты атомов диамагнетика сохраняется до тех пор, пока существует внешнее поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик рамагничивается.

У атома (молекулы) парамагнитных веществ орбитальные, спиновые и ядерные магнитные моменты не компенсируют друг друга. Поэтому атомы парамагнетика всегда обладают магнитным моментом, являясь как бы элементарными магнитами. Однако атомные магнитные моменты расположены беспорядочно и поэтому парамагнитная среда в целом не обнаруживает магнитных свойств. Внешнее магнитное поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля; полной ориентации препятствует тепловое движение атомов. В результате парамагнетик намагничивается и создает собственное магнитное поле, всегда совпадающее по направлению с внешним полем и поэтому усиливающее его (рисунок).

При ликвидации внешнего поля тепловое движение сразу же разрушает ориентацию атомных магнитных моментов и парамагнетик размагничивается.



У ферромагнетиков имеется множество сравнительно крупных самопроизвольно намагниченных до насыщения областей, называемых доменами. Линейные размеры домена имеют порядок 10 -2 см. Домен объединяет многие миллиарды атомов; в пределах одного домена магнитные моменты свех атомов ориентированы одинаково (спиновые магнитные моменты электронов свех атомов точнее). Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик в целом оказывается ненамагниченным.

С появлением внешнего поля домены, ориентированные своим магнитным моментом в направлении этого поля, начинают увеличиваться в объёме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается.. При достаточно сильном поле все домены целиком поворачиваются в направлении поля и ферромагнетик быстро намагничивается до насыщения.

При ликвидации внешнего поля ферромагнетики полностью не размагничиваются, а сохраняют остаточную магнитную индукцию, так как тепловое движение не в состоянии быстро дезориентировать столь крупные совокупности атомов, какими являются домены.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет.

Первичными физическим или физико-химическими процессами при действии магнитного поля на биологические системы могут быть: ориентация молекул, изменение концентрации молекул или ионов в неднородном магнитном поле, силовое воздействие (сила Лоренца) на ионы, перемещающиеся вместе с биологической жидкостью, эффект Холла, возникающий в магнитном поле при распостранении электрического импульса вобуждения и др.

Эффект Холла - возникновение в проводнике, помещенном в магнитное поле, электрического поля (поля Холла), направленного перпендикулярно Н и j (плотности тока).

В настоящее время физическая природа воздействия магнитного поля на биологические объекты ещё не установлена.

Магнитотерапия - метод физиотерапии, в основе которого лежит дйствие на организм низкочастотного переменного или постоянного магнитного поля.

Магнитные поля по направлению силовых линий могут быть постоянными и переменными и генерироваться в непрерывном или прерывистом (импульсном) режимах с раличной частотой, формой и длительностью импульсов. Магнитное поле, возникающее между северным и южным полюсами магнита, может быть однородным и неоднородным.

Основными векторными величинами, характеризующими магнитное поле, являются магнитная индукция В и намагниченность

Магнитная индукция В - это векторная величина, определяемая посиловому воздействию магнитного поля на ток (см. гл. 21).

Намагниченность J - магнитный момент единицы объема вещества.

Кроме этих двух величин магнитное поле характеризуется напряженностью магнитного поля Н.

Три величины - - связаны друг с другом следующей зависимостью:

В СИ единица индукции В - тесла или в кратных единицах Вб/см2, а в системе СГСМ - гаусс ).

Единица намагниченности J и напряженности поля Н - ампер на метр (А/м), а в системе СГСМ - эрстед (Э).

Намагниченность J представляет собой вектор, даправление которого полагают совпадающим с направлением в данной точке:

Коэффициент и для ферромагнитных веществ является функцией . Подставив (14.2) в (14.1) и обозначив получим

где - постоянная, характеризующая магнитные свойства вакуума; - абсолютная магнитная проницаемость.

В СИ Для ферромагнитных веществ является функцией .

Магнитный поток Ф через некоторую поверхность - это поток вектора магнитной индукции через эту поверхность:

где - элемент поверхности

В СИ единица магнитного потока - вебер (Вб); в СГСМ - максвелл .

При расчетах магнитных цепей обычно применяют две величины: магнитную индукцию В и напряженность магнитного поля .

Намагниченность в расчетах, как правило, не используют [при необходимости значение отвечающее соответствующим значениям В и , всегда можно найти по формуле (14.1)].

Известно, что ферро- и ферримагнитные тела состоят из областей самопроизвольного (спонтанного) намагничивания. Магнитное состояние каждой области характеризуется вектором намагниченности. Направление вектора намагниченности зависит от внутренних упругих напряжений и кристаллической структуры ферромагнитного тела.

Векторы намагниченности отдельных областей ферро (ферри) магнитного тела, на которые не воздействовало внешнее магнитное поле, равновероятно направлены в различные стороны. Поэтому во внешнем относительно этого тела пространстве намагниченности тела не проявляется. Если же его поместить во внешнее поле Я, то под его воздействием векторы на магниченности отдельных областей повернутся в соответствии с полем. При этом индукция результирующего поля в теле может оказаться во много раз больше, чем магнитная индукция внешнего поля до помещения в него ферромагнитного тела.