Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар

Литосфера - внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 - 200 и 5 - 100 км.

Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета - Земля имеет радиус 6370 км, среднюю плотность - 5,5 г/см3 и состоит из трех оболочек - коры , мантии и и. Мантия и ядро делятся на внутренние и внешние части.

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами - 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов - кислород, кремний, водород, алюминий, железо, магний, кальций, натрий - образовывают 99,5 % земной коры.

Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из:

  • Кислорода – 49%;
  • Кремния – 26%;
  • Алюминия – 7%;
  • Железа – 5%;
  • Кальция – 4%
  • В состав литосферы входит немало минералов, самые распространённые – шпат и кварц.

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) .

Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю - в районах платформ (под Западно-Сибирской низиной - 35-40, в границах Русской платформы - 30-35), а наименьшую - в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности - это равнины континентов и океанического дна.

Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты.

Блоки литосферы - литосферные плиты - двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium - кремний) и Al (лат. Aluminium - алюминий).

Литосферные плиты

Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются:

  • Тихоокеанская – самая большая плита планеты, вдоль границ которой происходят постоянные столкновения тектонических плит и образуются разломы – это является причиной её постоянного уменьшения;
  • Евразийская – покрывает почти всю территорию Евразии (кроме Индостана и Аравийского полуострова) и содержит наибольшую часть материковой коры;
  • Индо-Австралийская – в её состав входит австралийский континент и индийский субконтинент. Из-за постоянных столкновений с Евразийской плитой находится в процессе разлома;
  • Южно-Американская – состоит из южноамериканского материка и части Атлантического океана;
  • Северо-Американская – состоит из североамериканского континента, части северо-восточной Сибири, северо-западной части Атлантического и половины Северного Ледовитого океанов;
  • Африканская – состоит из африканского материка и океанической коры Атлантического и Индийского океанов. Интересно, что соседствующие с ней плиты движутся в противоположную от неё сторону, поэтому здесь находится наибольший разлом нашей планеты;
  • Антарктическая плита – состоит из материка Антарктида и близлежащей океанической коры. Из-за того, что плиту окружают срединно-океанические хребты, остальные материки от неё постоянно отодвигаются.

Движение тектонических плит в литосфере

Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею - один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).

Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков.

Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.

В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.

Проблемы литосферы

Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.

Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.

Литосферой называют твердую оболочку планеты, название которой происходит от греческого слова «литос», обозначающего камень. Термин был предложен Дж. Барреллом в 1916 году и использовался вначале им в качестве синонима земной коры. Только несколько лет спустя было доказано, что строение литосферы Земли более сложное. Оно включает в себя следующее:

  • Земная кора;
  • Мантия (верхний слой).

Основные слои

Земная кора – это составляющая часть литосферы, которая имеет глубину 35–70 км под континентальной частью суши и 5–15 км под океаническим дном. Она также состоит из слоев:

  • Материковая кора: осадочный, гранитный, базальтовый слой;
  • Океаническая: слой морских осадков (может отсутствовать в некоторых случаях вовсе), средний слой из базальта и серпентина, нижний слой из габбро.

В составе земной коры можно найти практически всю таблицу Менделеева, только в разных долях. Больше всего она содержит кислород, железо, кремний, алюминий, натрий, магний, кальций и калий. На земную кору приходится около 1% общей массы всей планеты.

Мантия – это нижняя часть литосферы, глубина которой доходит до 2900 км. Она состоит в основном их кремния, кислорода, железа, магния, никеля. Внутри ее различают особый слой – астеносферу, созданную из особого вещества. В состав твердой оболочки земли входит та часть мантии, которая находится до астеносферы. Это нижняя граница оболочки, верхняя же расположена рядом с атмосферой и гидросферой, с которыми литосфера взаимодействует, частично проникая в них.

Ошибочно причислять к литосфере ядро, отдельный слой земного шара, который находится на глубине 2900–6371 км и состоит из раскаленного железа и никеля.

Особенности оболочки

Исходя из строения литосферы Земли, можно утверждать, что она является относительно хрупкой оболочкой, поскольку не монолитная. Ее разбивают глубинные разломы на отдельные блоки (или плиты), которые очень медленно двигаются в горизонтальном направлении по астеносфере. Поэтому различают относительно стабильные платформы и подвижные области (складчатые пояса).

Строение литосферы Земли на сегодня – это разделение поверхности планеты на семь крупных и несколько малых плит. Границы между ними обозначены зонами наивысшей вулканической и сейсмической активности. В поперечнике же эти элементы литосферы имеют 1–10 тыс. км.

Изостазия

Отдельно хочется остановиться на изостазии, явлении, которое обнаружили ученые во время изучения горных массивов и силы тяжести у их подножия (горы образуются в местах стыка литосферных плит). Ранее считалось, что большие неровности рельефа увеличивают силу притяжения в регионе. Однако выяснилось, что сила тяжести одинакова на всей земной поверхности. Массивные сооружения уравновешиваются где-то в глубине Земли, в верхней мантии: чем крупнее гора, тем глубже она погружена в литосферу. На некоторое время земная кора может выйти из равновесия под воздействием тектонических сил, однако потом она все равно возвращается в него.

Литосферой называют верхнюю твердую оболочку Земли, со­стоящую из земной коры и слоя верхней мантии, подстилающего земную кору. Нижняя граница литосферы проводится на глубинах около 100 км под континентами и около 50 км под дном океана. Верхняя часть ли­тосферы (та, где существует жизнь) - составная часть биосферы.

Земная кора сложена магматическими и осадочными породами, а также метаморфическими породами, образовавшимися за счет тех и других.

Горные породы - это естественные минеральные агрегаты оп­ределенного состава и строения, сформировавшиеся в результате геологических процессов и залегающие в земной коре в виде само­стоятельных тел. Состав, строение и условия залегания горных пород обусловлены особенностями формирующих их геологических про­цессов, которые происходят в определенной обстановке внутри зем­ной коры или на земной поверхности. В зависимости от характера главных геологических процессов различают три генетических клас­са горных пород: осадочные, магматические и метаморфические.

Магматические горные породы - это естественные мине­ральные агрегаты, возникающие при кристаллизации магм (силикат­ных, а иногда и несиликатных расплавов) в недрах Земли илина ее поверхности. По содержанию кремнезема магматические породы делятся на кислые (SiO 2 - 70-90%), средние (SiO 2 > около 60%), основные (SiO 2 около 50%) и ультра­основные (SiO 2 менее 40%). Примером магматических пород служат вулканическая основная порода и гранит.

Осадочные горные породы - это те породы, которые су­ществуют в термодинамических условиях, характерных для по­верхностной части земной коры, и образуются в результате переотло­жения продуктов выветривания и разрушения различных горных по­род, химического и механического выпадения осадка из воды, жизне­деятельности организмов или всех трех процессов одновременно. Многие осадочные породы являются важнейшими полезными иско­паемыми. Примерами осадочных пород служат песчаники, которые можно рассматривать как скопления кварца и, следовательно, концен­траторы кремнезема (SiO 2), и известняки - концентраторы СаО. К ми­нералам, наиболее распространенных осадочных пород относятся кварц (SiO 2), ортоклаз (КalSi 3 O 8) каолинит (А1 4 Si 4 O 10 (ОН) 8), кальцит (СаСО 3), доломит СаМg(СО 3) 2 и др.



Метаморфическими называют породы, основные особенности которых (минеральный состав, структура, текстура) обусловлены процессами метаморфизма, тогда как признаки первичного магмати­ческого происхождения частично или полностью утрачены. Мета­морфические породы - сланцы, гранулиты, эклогиты и др. Типичные для них минералы - слюда, полевой шпат и гранат соответственно.

Вещество земной коры сложено в основном легкими элемента­ми (по Fе включительно), а элементы, следующие в Периодической системе за железом, в сумме составляют лишь доли процента. Отме­чается также, что элементы, имеющие четное значение атомной мас­сы, значительно преобладают: они образуют 86% общей массы зем­ной коры. Следует отметить, что в метеоритах это отклонение еще выше и составляет в металлических метеоритах 92%, в каменных -98%.

Средний химический состав земной коры, по данным разных авторов, приведен в табл. 25:

Таблица 25

Химический состав земной коры, маc. % (Гусакова, 2004)

Элементы и окислы Кларк, 1924 Фугт, 1931 Гольдшмидт, 1954 Полдерваатр, 1955 Ярошевский, 1971
SiO 2 59,12 64,88 59,19 55,20 57,60
TiO 2 1,05 0,57 0,79 1,6 0,84
Al 2 O 3 15,34 15,56 15,82 15,30 15,30
Fe 2 O 3 3,08 2,15 6,99 2,80 2,53
FeO 3,80 2,48 6,99 5,80 4,27
MnO 0,12 - - 0,20 0,16
MgO 3,49 2,45 3,30 5,20 3,88
CaO 5,08 4,31 3,07 8,80 6,99
Na 2 O 3,84 3,47 2,05 2,90 2,88
K 2 O 3,13 3,65 3,93 1,90 2,34
P 2 O 5 0,30 0,17 0,22 0,30 0,22
H 2 O 1,15 - 3,02 - 1,37
CO 2 0,10 - - - 1,40
S 0,05 - - - 0,04
Cl - - - - 0,05
C - - - - 0,14

Ее анализ позволяет сделать следующие важные выводы:

1) земная кора сложена в основном из восьми элементов: О, Si, А1, Fе, Са, Мg, Nа, К; 2) на долю остальных 84 элементов приходится менее одного процента массы коры; 3) среди главнейших по распро­страненности элементов особая роль в земной коре принадлежит ки­слороду.

Особая роль кислорода состоит в том, что его атомы со­ставляют 47% массы коры и почта 90% объема важнейших породо­образующих минералов.

Имеется ряд геохимических классификаций элементов. В на­стоящее время получает распространение геохимическая клас­сификация, согласно которой все элементы земной коры делятся на пять групп (табл. 26).

Таблица 26

Вариант геохимической классификации элементов (Гусакова, 2004)

Литофильные - это элементы горных пород. На внешней обо­лочке их ионов находится 2 или 8 электронов. Литофильные элемен­ты трудно восстанавливаются до элементарного состояния. Обычно они связаны с кислородом и составляют основную массу силикатов и алюмосиликатов. Встречаются также в виде суль­фатов, фосфатов, боратов, карбонатов и гадогенидов.

Халькофильные элементы - это элементы сульфидных руд. На внешней оболочкеих ионов располагается 8 (S,Sе,Те) иди 18 (у ос­тальных) электронов. В природе встречаются в виде сульфидов, селенидов, теллуридов, а также в самородном состоянии (Сu,Нg,Аg,Рb,Zn,As,Sb,Вi,S, Sе,Те,Sn).

Сидерофильные элементы - это элементы с достраивающимися электронными d- и f-оболочками. Они обнаруживают специфическое сродство к мышьяку и сере (PtAs 2 , FеАs 2 , NiAs 2 , FeS, NiS, МоS 2 и др.), а также к фосфору, углероду, азоту. Почти все сидерофильные элементы встречаются также и в самородном состоянии.

Атмофильные элементы - это элементы атмосферы. Боль­шинство изних имеет атомы с заполненными электронными оболоч­ками (инертные газы). К атмофильным относят также азот и водород. Вследствие вы­соких потенциалов ионизации атмофильные элементы с трудом вступают в соединения с другими элементами и потому в природе находятся (кроме Н) главным образом в элементарном (самородном) состоянии.

Биофильные элементы - это элементы, входящие в состав орга­нических компонентов биосферы (С,Н,N,О,Р,S). Из этих (в ос­новном) и других элементов образуются сложные молекулы угле­водов, белков, жиров и нуклеиновых кислот. Средний химический состав белков, жиров и углеводов приведен в табл. 27.

Таблица 27

Средний химический состав белков, жиров и углеводов, мас. % (Гусакова, 2004)

В настоящее время в различных организмах установлено более 60 элементов. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макробиогенными элементами. Элементы же и их соединения, которые хотя и не­обходимы для жизнедеятельности биосистем, но требуются в крайне малых количествах, называют микробиогенными элементами. Для растений, например, важны 10 микроэлементов: Fе, Мn, Сu, Zn, В, Si, Мо, С1, W, Со.

Все эти элементы, кроме бора, требуются и животным. Кроме того, животным могут требоваться селен, хром, никель, фтор, йод, олово. Между макро- и микроэлементами нельзя провести четкую и одинаковую для всех групп организмов границу.

Процессы выветривания

Поверхность земной коры подвержена действию атмосферы, что делает ее восприимчивой к физическим и химическим процессам. Физическое выветривание является механическим процессом, в ре­зультате которого порода размельчается до частиц меньшего размера без существенных изменений в химическом составе. Когда сдержи­вающее давление коры устраняется поднятием и эрозией, устраняют­ся и внутренние напряжения в пределах подстилающих пород, по­зволяя расширившимся трещинам открыться. Эти трещины могут потом раздвинуться за счет термического расширения (вызванного суточными флуктуациями температуры), расширения воды в процес­се замерзания, а также воздействия корней растений. Другие физиче­ские процессы, например ледниковая деятельность, оползни и исти­рание песком, производят дальнейшее ослабление и разрушение твердой породы. Эти процессы важны, поскольку они значительно увеличивают поверхностные участки породы, подверженные дейст­вию агентов химического выветривания, например воздуха и воды.

Химическое выветривание вызывается водой - особенно ки­слой водой - и газами, например кислородом, который разрушает ми­нералы. Некоторые ионы и соединения исходного минерала удаляют­ся с раствором, просачивающимся через обломки минералов и пи­тающим грунтовые воды и реки. Тонкозернистые твердые вещества могут вымываться из выветриваемого участка, оставляя химически измененные остатки, которые формируют основу почв. Из­вестны различные механизмы химического выветривания:

1. Растворение. Простейшая реакция выветривания - это раство­рение минералов. Молекула воды эффективна при разрыве ионных связей, например таких, которые соединяют ионы натрия (Na +) и хлора (Cl -) в галите (каменная соль). Мы можем выразить растворе­ние галита упрощенно, т.е.

NaCl (тв) Na + (водн) + Cl - (водн)

2. Окисление. Свободный кислород играет большую роль при разложении веществ в восстановленной форме. Например, окисление восстановленного железа (Fe 2+) и сера (S) в обычном сульфиде, пи­рите (FeS 2) приводит к образованию сильной серной кислоты (H 2 SO 4):

2FeS 2(тв) + 7,5 О 2(г) + 7Н 2 О (ж) 2Fe(OH) 3(тв) + Н 2 SO 4(водн).

Сульфиды часто встречаются в алеврито-глииистых породах, рудных жилах и угольных отложениях. При разработке рудных и угольных месторождений сульфид остается в отработанной породе, которая накапливается в отвалах. Такие отвалы пустой породы име­ют большие поверхности, подверженные влиянию атмосферы, где окисление сульфидов происходит быстро и в больших масштабах. Кроме того, заброшенные рудные выработки быстро затопляются грунтовыми водами. Образование серной кислоты делает дренажные воды с заброшенных рудников сильно кислыми (рН до 1 или 2). Та­кая кислотность может увеличить растворимость алюминия и стать причиной токсичности для водных, экосистем. В окисление сульфи­дов вовлечены микроорганизмы, что можно моделировать рядом ре­акций:

2FeS 2(тв) + 7О 2(г) + 2Н 2 О (ж) 2Fe 2+ + 4Н + (водн) + 4SO 4 2- (водн) (окисление пирита), затем следует окисление железа в :

2Fe 2+ + О 2(г) + 10Н 2 О (ж) 4Fe(OH) 3(тв) + 8Н + (водн)

Окисление - происходит очень медленно при низких значе­ниях рН кислых рудниковых вод. Однако ниже рН 4,5 окисление железа катализируют Thiobacillus ferrooxidans и Leptospirillum. Окисное железо может далее взаимодействовать с пиритом:

FeS 2(тв) + 14 Fe 3+ (водн) + 8Н 2 О (ж) 15 Fe 2+ (водн) + 2SO 4 2- (водн) + 16Н + (водн)

При значениях рН намного выше 3 железо (III) осаждается как обычный оксид железа (III), гетит (FеООН):

Fe 3+ (водн) + 2Н 2 О (ж) FеООН + 3Н + (водн)

Осажденный гетит покрывает дно ручьев и кирпичную кладку в виде характерного желто-оранжевого налета.

Восстановленные железосодержащие силикаты, например некоторые оливины, пироксены и амфиболы, также могут пре­терпевать окисление:

Fe 2 SiO 4(тв) + 1/2O 2(г) + 5H 2 O (ж) 2Fe(OH) 3(тв) + H 4 SiO 4(водн)

Продуктами являются кремниевая кислота (H 4 SiO 4) и коллоид­ный гидроксид железа , слабое основание, которое при де­гидратации дает ряд оксидов железа, например Fе 2 O 3 (гематит - темно-красного цвета), FеООН (гетит и лепидокрокит - желтого цвета или цвета ржавчины). Частая встречаемость этих оксидов же­леза говорит об их нерастворимости в окислительных условиях зем­ной поверхности.

Присутствие воды ускоряет окислительные реакции, о чем сви­детельствует ежедневно наблюдаемое явление окисления металличе­ского железа (ржавчина). Вода действует как катализатор, окисли­тельный-потенциал зависит от парциального давления газообразного кислорода и кислотности раствора. При рН 7 вода в контакте с воз­духом имеет Еh порядка 810 мВ - окислительный потенциал, на­много больший того, который необходим для окисления закисного железа.

Окисление органического вещества. Окисление восстановлен­ного органического вещества в почвах катализируется микроор­ганизмами. Опосредованное бактериями окисление мертвого органи­ческого вещества до СО 2 важно с точки зрения образования кислот­ности. В биологически активных почвах концентрация СО 2 может в 10-100 раз превышать ожидаемую при равновесии с атмосферным СО 2 приводя к образованию угольной кислоты (Н 2 СО 3) и Н + при ее диссоциации. Чтобы упростить уравнения, орга­ническое вещество представлено обобщенной формулой для углево­да, СН 2 О:

СН 2 О (тв) + О 2(г) СО 2(г) + Н 2 О (ж)

СО 2(г) + Н 2 О (ж) Н 2 СО 3(водн)

Н 2 СО 3(водн) Н + (водн) + НСО 3 - (водн)

Эти реакции могут понизить водный рН почв от 5,6(значение, которое устанавливается при равновесии с атмосферным СО 2) до 4- 5. Это является упрощением, поскольку органическое вещество почв (гумус) не всегда полностью разлагается до СО 2 . Однако продукты частичного разрушения обладают карбоксильными (СООН) и фенольными группами, которые при диссоциации дают ионы Н + :

RCOOH (водн) RCOO - (водн) + Н + (водн)

где R означает большую органическую структурную единицу. Кислотность, накапливаемая при разложении органического вещества, используется при разрушении большинства силикатов в процессе кислотного гидролиза.

3. Кислотный гидролиз. Природные воды содержат растворимые вещества, которые придают им кислотность - это и диссоциации атмосферного СО 2 в дождевой воде, и частично диссоциация почвен­ного СО 2 с образованием Н 2 СО 3 , диссоциация природного и антропогенного диоксида серы (SO 2) с образованием Н 2 SO 3 и Н 2 SО 4 . Реак­цию между минералом и кислыми агентами выветривания обычно называют кислотным гидролизом. Выветривание СаСО 3 демонстри­рует следующая реакция:

СаСО 3(тв) + Н 2 СО 3(водн) Са 2+ (водн) + 2НСО 3 - (водн)

Кислотный гидролиз простого силиката, например богатого магнием оливина, форстерита, можно обобщить следующим образом:

Mg 2 SiO 4 (тв) + 4H 2 CO 3(водн) 2Mg 2+(водн) + 4НСО 3 - (водн) + H 4 SiO 4(водн)

Отметим, что при диссоциации Н 2 СО 3 образуется ионизирован­ный НСО 3 - , немного более сильная кислота, чем нейтральная моле­кула (Н 4 SiO 4), образующаяся при разложении силиката.

4. Выветривание сложных силикатов. До сих пор мы рассматри­вали выветривание мономерных силикатов (например, оливина), кото­рые полностью растворяются (конгруэнтное растворение). Это упро­щало химические реакции. Однако присутствие измененных в процессе выветривания минеральных остатков предполагает, что более распро­странено неполное растворение. Упрощенная реакция выветривания на примере богатого кальцием анортита:

CaAl 2 Si 2 O 8(тв) +2H 2 CO 3(водн) +H 2 O (ж) Ca 2+ (водн) +2HCO 3 - (водн) + Аl 2 Si 2 O 5 (OH) 4(тв)

Твердым продуктом реакции является каолинит Аl 2 Si 2 O 5 (OH) 4 , важный представитель глинистых минералов.

Литосфемра (от греч. лЯипт -- камень и уцбЯсб -- шар, сфера) -- твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Схема внутреннего строения земли

Схема материковой и океанической земной коры

Основными формами рельефа на суше являются горы и равнины.

Классификации форм рельефа:

С учетом свойств рельефа разработано несколько классификаций:

1) Морфологическая классификация, учитывающая величину форм рельефа

Планетарные формы - это материки, подвижные пояса, ложе океана и срединно-океанические хребты;

Мегаформы - это части планетарных форм, т.е. равнины и горы;

Макроформы - это части мегаформ: горные хребты, крупные долины и впадины;

Мезоформы - это формы средней величины: балки, овраги;

Микроформы - неровности, осложняющие поверхность мезоформ: карстовые воронки, промоины;

Наноформы - очень мелкие неровности, осложняющие мезо- и микроформы: кочки, рябь на склонах барханов и др.

2)Классификация по генетическим признакам

Выделяют два класса:

  • 1. Формы, образовавшиеся в результате деятельности внутренних, эндогенных сил;
  • 2. Формы, образовавшиеся за счет экзогенных, внешних сил.

Первый класс включает в себя два подкласса: а) формы, связанные с движением земной коры; б) формы, связанные с вулканической деятельностью. Во второй класс входят: а) флювиальные формы; б) эоловые формы; в) гляциальные; г) карстовые и др.

3) Морфогенетическая классификация:

Впервые была предложена в начале 20 столетия Энгельном. Он выделил три категории рельефа:

  • 1. Геотектуры;
  • 2. Морфоструктуры;
  • 3. Морфоскульптуры.

При этом выделяются:

Геотектуры - самые крупные формы рельефа на Земле: планетарные, и мегаформы. Они созданы космическими и планетарными силами.

Морфоструктуры - крупные формы земной поверхности, которые созданы под влиянием эндогенных и экзогенных процессов, но при ведущей и активной роли тектонических движений.

Морфоскульптуры - это средние и мелкие формы рельефа (мезо-, микро и наноформы), созданные при участии эндо- и экзогенных сил, но при ведущей и активной роли экзогенных сил.

4. Классификация рельефа по возрасту

Развитие рельефа какой-либо территории, как показал американский геоморфолог У. Дэвис, происходит по стадиям. Под возрастом рельефа можно понимать определенные стадии его развития. Например, формирование речной долины после отступления ледника: вначале река врезается в подстилающие породы, в продольном профиле много неровностей, нет поймы. Это стадия юности речной долины. Затем формируется нормальный профиль, образуется пойма реки. Это стадия зрелости долины. За счет боковой эрозии пойма расширяется, течение реки замедляется, русло становится извилистым. Наступает стадия старости в развитии речной долины.

У. Дэвис учитывал комплекс морфологических и динамических признаков и выделял три стадии: молодости, зрелости и старости рельефа.

Геосинклинали - мобильные пояса литосферы, в которых в течение тектонического цикла последовательно проявляются вначале силы растяжения и погружения, затем - сжатия и поднятия земной коры, а также происходит накопление и дислокация, метаморфизм и гранитизация осадочных пород и преобразование геосинклинальных областей в платформенные и океанических областей в континентальные.

Геосинклинали обладают следующими признаками:

  • 1) Колоссальными размерами (многие тысячи км в длину и до тысячи км в ширину);
  • 2) Формой (прямолинейная, дугообразная и кольцевая);
  • 3) Повышенная проницаемость литосферы для потоков эндогенного тепла, а также магматических расплавов и других флюидов. К геосинклинальным областям приурочена основная масса интрузивных и эффузивных тел;
  • 4) Морфотектоническая выраженность. На первом этапе развития геосинклинали представлены морскими впадинами, а на заключительном - континентальными высокогорными складчатыми системами;
  • 5) Специфические формации;
  • 6) Резкие изменения мощности осадочных пород в крест простирания геосинклиналей. Суммарная мощность осадков в некоторых местах может достигать 20-25км;
  • 7) Процессы дислокации, метаморфизма и гранитизации осадочных пород.

В структурном делении геосинклиналей элементом первой величины является геосинклинальный пояс - мобильная зона литосферы планетарных размеров, испытывающая тектогенез конструктивного направления. Крупные геосинклинальные пояса в основном разделяют и обрамляют древние платформы, и считается, что они начали формироваться в позднем протерозое. земной кора континентальный платформа

Платформы - малоподвижные крупные изометрической формы глыбы земной коры или фундамент из магматических и метаморфических пород, осадочный чехол, характеризующиеся сравнительно низкой проницаемостью земной коры, низкой сейсмичностью и вулканизмом.

Платформы делятся на континентальные (кратоны) и океанические. Основное их различие состоит в:

  • 1) разнородном составе второго слоя коры;
  • 2) большой разнице послойной и суммарной мощности литосферы;
  • 3) в неодинаковой внутренней структуре этих платформ;

Осадочный чехол платформ характеризуется горизонтальным или почти горизонтальным залеганием слоев, сравнительным постоянством их состава, выдержанностью мощностей и набором определенных платформенных формаций.

Континентальные платформы представляют собой как бы ядра материков и занимают большие части площади материков. Слагаются континентальные платформы типичной континентальной корой, мощностью 35-40км. В пределах платформ мощность литосферы достигает 150 - 200км, а в некоторых случаях 400км. Значительная часть платформ покрыта неметаморфизированным осадочным чехлом, мощностью 3 - 5км, а в перегибах и впадинах мощность может достигать 10 - 12км, а в некоторых случаях 25км. В состав осадочного чехла могут входить покровы платобазальтов, а иногда и более кислые вулканиты. Там, где платформы не покрыты чехлом, на поверхность выходит фундамент, сложенный метаморфическими породами разной степени метаморфизма, а также интрузивно-магматическими породами, в основном гранитами.

Платформы обладают равнинным рельефом (низменным или плоскогорным). Некоторые участки платформ могут быть покрыты мелким эпиконтинентальным морем (Белое и Азовское моря). Для платформ характерна низкая современных вертикальных движений, очень слабая сейсмичность, отсутствие вулканической деятельности и пониженный тепловой поток (по сравнению со среднеземным).

Континентальные платформы делятся на древние и молодые.

Древние являются наиболее типичными платформами с докембрийским, в основном раннедокембрийским фундаментом и составляют древнейшие центральные части материков. К древним платформам относятся Северо-Американская, Восточно-Европейская, Сибирская, Китайско-Корейская. Эти платформы составляют северный ряд платформ. Далее идут Южно-Американская, Африканская, Индостанская, Австралийская, Антарктическая, которые занимают южный ряд. В отдельную группу входит Южно-Китайская платформа, которую японские геологи называют Янцзы. В фундаменте этих платформ преобладают архейские образования. За ними идут раннепротерозойские, среднепротерозойские и верхнепротерозойские.

Древние платформы имеют полигональное очертание и отделены от смежных сдвигово-надвиговых сооружений передовыми прогибами. Эти прогибы налагаются на опущенные края платформ, либо непосредственно тектонически перекрыты их надвинутыми периферическими зонами. По периферии Восточно-Европейской платформы наблюдаются оба типа таких отношений.

Таким образом, основными признаками древних континентальных платформ являются:

  • 1) двухэтажное строение (фундамент сложен докембрийскими породами и осадочным чехлом);
  • 2) большое распространение осадочного чехла выдержанной мощности и одинакового состава;
  • 3) складчатость прерывистого типа;
  • 4) отсутствие прямой унаследованной связи между структурами чехла и складчатостью фундамента.

Молодые континентальные платформы занимают значительно меньшую площадь материков (около 5%) и располагаются в основном по периферии континентов либо между древними платформами.

К молодым платформам относятся Среднеевропейская и Западноевропейская, Восточноавстралийская, Патагонская платформы. Они находятся на окраинах континентов. Западносибирская платформа относится к платформам, расположенным между древними платформами.

Фундамент молодых платформ сложен в основном осадочно-вулканическими породами фанерозойского возраста, которые слабо метаморфизированы. Граниты и другие интрузивные образования играют подчиненную роль в составе фундамента и поэтому фундамент молодых платформ именуется не кристаллическим, а складчатым. Поэтому фундамент молодых платформ отличается от фундамента осадочного чехла только высокой дислоцированностью. В связи с этим, в зависимости от возраста завершающей складчатости фундамента молодых платформ, все платормы или их части подразделяются на эпикаледонские, эпигерцинские, эпикиммерийские.

Осадочный чехол молодых платформ сложен юрскими или мел-четвертичными отложениями. Так, на эпигерцинских платформах чехол начинается с верхней перьми, а на эпикаледонских - с верхнего дэвона. В связи с тем, что молодые платформы в большей степени покрыты осадочным чехлом, чем древние, в литературе их часто называют плитами.

Таким образом, молодые платформы характеризуются следующими признаками:

  • 1) трехэтажное строение: фундамент, промежуточный комплекс и осадочный чехол;
  • 2) располагаются молодые платформы на периферии геосинклинальных поясов и на стыке древних платформ;
  • 3) частичная унаследованность структурного плана и типа складчатости основания в осадочном чехле;
  • 4) наличие как прерывистого, так и линейного типа складчатости.

Тектонические структуры, залегающие в основе территории

Форма рельефа

Полезные ископаемые

Вывод о связи

Кольский полуостров

Рельеф Кольского полуострова представляет собой впадины, террасы, горы, плато. Горные массивы полуострова возвышаются над уровнем моря на более чем 800 метров. Равнины Кольского полуострова занимают болота и многочисленные озера.

По разнообразию минеральных видов Кольский полуостров не имеет аналогов в мире. На его территории обнаружено около 1000 минералов -- почти 1/3 всех известных на Земле. Около 150 минералов не встречаются нигде больше. Месторождения апатито-нефелиновых руд (Хибины), железа, никеля, платиновых металлов, редкоземельных металлов, лития, титана, бериллия, строительных и ювелирно-поделочных камней (амазонит, аметист, хризолит, гранат, яшма, иолит и др.), керамических пегматитов, слюды (мусковит, флогопит и вермикулит -- крупнейшие мировые запасы)

Уральские горы

Урал - район, где граничат различные формы рельефа. Уральские горы невысокие. Лишь несколько вершин достигают высоты 1500 м. Самая высокая вершина Урала - гора Народная (1895 м) . Горы состоят из нескольких параллельных друг другу цепей. Цепи вдоль и поперек разделены понижениями, по которым текут реки. Кроме того, они сильно разрушены. Здесь много относительно ровных поверхностей. Но хотя Уральские горы и невысоки, все-таки это горы. Крупнейшие города Урала расположены либо на равнинных территориях, либо на высотах до 400 м над уровнем моря.

Урал -- это сокровищница разнообразных полезных ископаемых. Из 55 видов важнейших полезных ископаемых, которые разрабатывались в СССР, на Урале представлено 48. Для восточных районов Урала наиболее характерны месторождения медноколчеданных руд (Гайское, Сибайское, Дегтярское месторождения, Кировградская и Красноуральская группы месторождений), скарново-магнетитовых (Гороблагодатское, Высокогорское, Магнитогорское месторождения), титано-магнетитовых (Качканарское, Первоуральское), окисных никелевых руд (группа Орско-Халиловских месторождений) и хромитовых руд (месторождения Кемпирсайского массива), приуроченных в основном к зеленокаменному поясу Урала, залежи угля (Челябинский угольный бассейн), россыпи и коренные месторождения золота (Кочкарское, Берёзовское) и платины (Исовские). Здесь расположены крупнейшие месторождения бокситов (Северо-Уральский бокситоносный район) и асбеста (Баженовское). На западном склоне Урала и в Приуралье имеются месторождения каменного угля (Печорский угольный бассейн, Кизеловский угольный бассейн), нефти и газа (Волга-Уральская нефтегазоносная область, Оренбургское газо-конденсатное месторождение), калийных солей (Верхнекамский бассейн). Особенно Урал славится своими «самоцветами» -- драгоценными, полудрагоценными и поделочными камнями (изумруд, аметист, аквамарин, яшма, родонит, малахит и др.). В недрах гор содержится более двухсот разных минералов. Из Уральского малахита и яшмы сделаны чаши петербургского Эрмитажа, а также внутренняя отделка и алтарь храма Спаса на Крови.

Земная кора и верхняя (твердая) часть мантии образуют литосферу. Она представляет собой «шар» из твёрдого вещества радиусом около 6400км. Земная кора - внешняя оболочка литосферы. Состоит из осадочного, гранитного и базальтового слоев. Отличают океаническую и материковую земную кору. В составе первой отсутствует гранитный слой. Максимальная толщина земной коры около 70 км - под горными системами, 30- 40 км - под равнинами, наиболее тонкая земная кора - под океанами, всего 5- 10 км.

Остальную часть мы называем внутренней литосферой, которая включает также и центральную часть, называемую ядром. О внутренних слоях литосферы нам почти ничего не известно, хотя на их долю приходится почти 99,5% всей массы Земли. Их можно изучать только с помощью сейсмических исследований.

Литосфера разбита на блоки - литосферные плиты - это крупные жесткие блоки земной коры, которые двигаются по относительно пластичной астеносфере. Литосфера под океанами и континентами значительно различается.

Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами и в основном состоит из дунитов и гарцбургитов.

Литосфера под континентами значительно холоднее, мощнее и, видимо, разнообразнее. Она не участвует в процессе мантийной конвекции, и претерпела меньше циклов частичного плавления. В целом она богаче несовместимыми редкими элементами. В её составе значительную роль играют лерцолиты, верлиты и другие богатые редкими элементами породы.

Литосфера расколота примерно на 10 больших плит, самые крупные - Евразийская, Африканская, Индо-Афстралийская, Американская, Тихоокеанская, Антарктическая. Литосферные плиты движутся с возвышающейся на них сушей. В основе теории движения литосферных плит - гипотеза А. Вегенера о дрейфе континентов.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. С другой стороны, разделение земной коры на плиты не однозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Движение литосферных плит обусловлено перемещением вещества в верхней мантии. В рифтовых зонах оно разрывает земную кору и расталкивает плиты. Большинство рифтов находится на дне океанов, где земная кора тоньше. На суше крупнейшие рифты расположены в районе Великих Африканских озер и озера Байкал. Скорость движения литосферных плит - -1-6 см в год.

При столкновении литосферных плит на их границах образуются: горные системы, если в зоне столкновения обе плиты несут материковую кору (Гималаи), и глубоководные желоба, если одна из плит несет океаническую кору (Перуанский желоб). С этой теорией согласуется предположение о существовании древних материков: южного - Гондваны и северного - Лавразии.

Границы литосферных плит - это подвижные области, где происходят горообразование, сосредоточены области землетрясений и большинство действующих вулканов (сейсмические пояса). Самые обширные сейсмические пояса - Тихоокеанский и Средиземноморского - Трансазиатский.

На глубине 120-150 км под материками и 60-400 км под океанами залегает слой мантии, называется астеносферой. Все литосферные плиты как бы плавают в полужидкой астеносфере, как льдины в воде.

литосфера земной кора антропогенный