Энергия Силы.

Итак, что такое Сила?

Физика характеризует Силу следующим образом:

«Сила – это мощность, энергия, заряд, способность противостоять прилагаемым нагрузкам и напряжениям».

«э нергия» – это количественная мера, отражающая силу, т.е. скорость движения, с помощью которой определяется взаимодействие всех видов материи.

В соответствии с различными формами материи - рассматриваются разные формы энергии (движения): - механическая, внутренняя, электромагнитная, химическая, ядерная и др.

Следующая формула и является выражением количества энергии или силы:

Е = m с 2 ;

Где Е – энергия, m – масса, с - скорость.

Исходя из формулы, сила и энергия зависят не столько от массы, сколько от скорости движения этой массы, а вернее от первичного действия (импульса силы).

Двигаться могут не только материальные тела, такие как летящая пуля или брошенный камень, о движении можно также сказать относительно солнечного зайчика, перемещающегося по стене при повороте зеркальца, или о движении тени, отбрасываемой освещенным предметом. Поэтому движение может быть связано как с перемещением материальных тел, так и с передачей из одного места в другое какого-либо сигнала, например звукового, светового или радиосигнала.

Для изучения движения, прежде всего, необходимо научиться описывать движения материальных тел по отношению к любым другим физическим телам.

Всякое движение, а также покой тела (как частный случай движения) относительны. Отвечая на вопрос, покоится тело или движется и как именно движется, необходимо указывать, относительно каких тел рассматривается движение данного тела, иначе никакое высказывание о движении не может иметь смысла.

Во всех случаях, физические тела, относительно которых рассматривается движение, называют системой отсчета, а само движение тел носит название «перемещение».

При изучении движений на поверхности Земли за систему отсчета, как правило, принимают саму Землю. Изучая движение Земли или других планет в Космосе, за систему отсчета принимают Солнце и звезды.

Такая система отсчетов принята при изучении законов динамики.

Если же мы не будем выяснять причину возникновения движений, то в этом случае мы будем рассматривать кинематику этих движений.

Для того, чтобы знать перемещение тела, достаточно знать начальное его положение, а также численную величину и знак пройденного пути. Точно так же, зная начальное положение тела, численное значение его скорости и направление движения этого тела, мы можем ответить на вопрос, где будет находиться это тело через одну секунду, через две секунды и т. д. Но если тело будет двигаться как угодно, то этих данных нам уже недостаточно.

Рис. 1. Разметка криволинейной траектории.

Перемещение АВ точки между ее положениями А и В

не лежит на траектории.
сли траектория движения тела - кривая линия, то перемещением тела мы по-прежнему будем называть отрезок, соединяющий его начальное и конечное положения. Если произвести разметку криволинейной траектории и «привязку» отдельных положений движущейся точки к соответственным моментам времени (см. рис. 1), то окажется, криволинейное движение состоит из большого количества прямолинейных, а общая скорость криволинейного движения будет определяться средней скоростью, которая является производной от участков с прямолинейным движением, скорость движения на которых неравномерна и зависит от кривизны (угла) движения.

Однако это лишь грубое, приближенное понятие о характере движения. Дело состоит в том, что, определяя среднюю скорость, мы как бы заменяем движение в течение каждого промежутка времени равномерным движением и считаем, что скорость меняется скачком от одного промежутка времени к другому. Однако, на самом деле, эти участки могут иметь различную длину и направление и соответственно скорость на них будет сильно различаться.

Как правило, среднюю скорость равномерного движения называют мгновенной скоростью или просто скоростью. Если движение равномерно, то его мгновенная скорость в любой момент времени равна скорости этого равномерного движения, другими словами: - мгновенная скорость равномерного движения постоянна. Мгновенная же скорость неравномерного движения - является переменной величиной, принимающей различные значения в разные моменты времени. Отсюда становится ясно, что мгновенная скорость криволинейного движения является изменяющейся во все время движения.

Если мгновенная скорость движущегося тела растет, то движение называют ускоренным; если мгновенная скорость уменьшается, то движение называют замедленным.

Среди разнообразных ускоренных движений часто встречаются движения, в которых мгновенная скорость за любые равные промежутки времени увеличивается на одну и ту же величину. Такие движения называют равномерно-ускоренными. Равномерно-ускоренные движения нарушаются трением и сопротивлением воздуха

Равномерно-ускоренное движение количественно характеризуется изменением скорости с течением времени, которое носит название - ускорение.

Если движение не является равномерно-ускоренным, то вводится понятие среднего ускорения, которое характеризует изменение скорости за определенный промежуток времени на пройденном за этот промежуток времени участке пути. На отдельных же отрезках этого участка среднее ускорение может иметь разные значения.

Как правило, траектории движения разных точек тела бывают различными.

Наиболее простое движение тела представляет собой такое движение, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным.

При поступательном движении любая прямая, проведенная в теле, остается параллельной самой себе.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой, которую называют осью вращения.

Как возвратно-поступательное, так и вращательные движения имеют свои определенные границы (края), направление (ось, вектор) и ритм (амплитуду, частоту) движений.


Рис. 2. Незатухающие колебания
Именно эти 2 движения и лежат в основе всех видов движений, будь то механические, звуковые, электрические, световые и др. электромагнитные, химические и т.п.

Именно эти движения и представляют собой колебания маятника, которые могут быть незатухающими или затухающими.

Н

рис. 3. Затухающие колебания
езатухающие колебания происходят в колебательной системе в отсутствие трения и носят название - собственные колебания системы (рис. 2).

Однако, в Природе существуют разного рода силы трения, сопротивление воздуха и т. п., которые тормозят процесс движения и являются причиной затухания колебаний (остановки движения) (рис. 3).

У

Рис. 4. Апериодические движения
величивая тем или иным способом трение, можно дойти до столь больших затуханий, при которых система останавливается после первого же размаха, или даже до первого перехода через положение равновесия (рис. 4). Такие сильно затухающие движения колебательной системы называются апериодическими.

Рассматривая колебания груза на пружине, легко наблюдать рост затухания при увеличении трения. Если груз поместить в воду, то затухание колебаний резко возрастет по сравнению с затуханием на воздухе, в масле оно будет еще больше, чем в воде: движение получится апериодическим или близким к апериодическому.

Итак, подытожим:


  1. Сила и есть Энергия.

  2. Скорость движения материи – определяет количество Силы (Энергии).

  3. В основе любого движения лежит начальный импульс, который называется мгновенной скоростью.

  4. Количественное выражение мгновенной скорости называется ускорением.

  5. Существует только 2 основополагающих видов движений - поступательное и вращательное, все остальные движения – их различные комбинации.

  6. Эти движения могут быть незатухающими, затухающими и апериодическими.

  7. Механические, звуковые, электромагнитные, химические и т.п. явления, которые принято отображать понятием Энергия – являются движением материи, находящейся в различных агрегатных состояниях.

Итак, в любом случае, при любом виде движений, за систему отсчетов следует принимать какое – либо материальное тело или вещество.

Человеческий организм не является особым исключением из правил, он также является материальным телом, имеющем сложноорганизованную комбинацию веществ от мельчайших клеток до крупнотканных структур. Поэтому рассматривать наш организм следует, исходя из тех законов Природы, по которым и существует наш Мир.

См. также «Физический портал»

Сила как векторная величина характеризуется модулем , направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами.В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы). .

Также используется понятие линия действия силы , обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Размерность силы - LMT −2 , единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС - дина .

История понятия

Понятие силы использовали ещё ученые античности в своих работах о статике и движении. Изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед . Представления Аристотеля о силе, связанные с фундаментальными несоответствиями, просуществовали в течение нескольких столетий. Эти несоответствия устранил в XVII в. Исаак Ньютон , используя для описания силы математические методы. Механика Ньютона оставалась общепринятой на протяжении почти трехсот лет. К началу XX в. Альберт Эйнштейн в теории относительности показал, что ньютоновская механика верна лишь в при сравнительно небольших скоростях движения и массах тел в системе, уточнив тем самым основные положения кинематики и динамики и описав некоторые новые свойства пространства-времени .

Ньютоновская механика

Исаак Ньютон задался целью описать движение объектов, используя понятия инерции и силы. Сделав это, он попутно установил, что всякое механическое движение подчиняется общим законам сохранения . В г. Ньютон опубликовал свой знаменитый труд « », в котором изложил три основополагающих закона классической механики (знаменитые законы Ньютона).

Первый закон Ньютона

Например, законы механики абсолютно одинаково выполняются в кузове грузовика, когда тот едет по прямому участку дороги с постоянной скоростью и когда стоит на месте. Человек может подбросить мячик вертикально вверх и поймать его через некоторое время на том же самом месте вне зависимости от того движется ли грузовик равномерно и прямолинейно или покоится. Для него мячик летит по прямой. Однако для стороннего наблюдателя, находящегося на земле, траектория движения мячика имеет вид параболы . Это связано с тем, что мячик относительно земли движется во время полета не только вертикально, но и горизонтально по инерции в сторону движения грузовика. Для человека, находящегося в кузове грузовика не имеет значения движется ли последний по дороге, или окружающий мир перемещается с постоянной скоростью в противоположном направлении, а грузовик стоит на месте. Таким образом, состояние покоя и равномерного прямолинейного движения физически неотличимы друг от друга.

Второй закон Ньютона

По определению импульса:

где − масса, − скорость .

Если масса материальной точки остается неизменной, то производная по времени от массы равна нулю, и уравнение принимает вид:

Третий закон Ньютона

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2, сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2. Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие». Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением . Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.

Фундаментальные взаимодействия

Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме . Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях , они ответственны за возникновение взаимодействия между субатомными частицами , включая нуклоны , из которых состоят атомные ядра .

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы , и потому применение к ним термина «сила» объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики высоких энергий избегают употреблять слово сила , заменяя его словом взаимодействие .

Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов , слабое − векторных бозонов , сильное − глюонов (и на больших расстояниях - мезонов). В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие . Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули , который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины , описываемая законом Гука , также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия. .

Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вопроса о действии сил.

Гравитация

Гравитация (сила тяготения ) - универсальное взаимодействие между любыми видами материи . В рамках классической механики описывается законом всемирного тяготения , сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии ». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли , положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел . На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния между ними:

Здесь − гравитационная постоянная , значение которой впервые получил в своих опытах Генри Кавендиш . Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия , противоречащая теории относительности . Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью , близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них .

Электромагнитное взаимодействие

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, основанных на удобствах измерения, вместо заряда нередко стал использоваться электрический ток с размерностью I, причём I = C T − 1 . Единицей измерения величины заряда является кулон, а силы тока ампер.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух «точечных зарядов» в вакууме используется закон Кулона:

где - расстояние между зарядами, а ε 0 ≈ 8.854187817·10 −12 Ф/м. В однородном (изотропном) веществе в этой системе сила взаимодействия уменьшается в ε раз, где ε - диэлектрическая постоянная среды.

Направление силы совпадает с линией, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряжённая частица. Эти линии начинаются на одном и заканчиваются на другом зарядах.

Электромагнитное поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» - магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Производные виды сил

Сила упругости - сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности. Вектор силы противоположен направлению смещения молекул.

Сила трения - сила, возникающая при относительном движении твёрдых тел и противодействующая этому движению. Относится к диссипативным силам. Сила трения имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости.

Сила сопротивления среды - сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры - сила упругости, действующая со стороны опоры на тело. Направлена перпендикулярно к поверхности опоры.

Силы поверхностного натяжения - силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

Осмотическое давление

Силы Ван-дер-Ваальса - электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей. Ван-дер-Ваальсовы силы быстро убывают с увеличением расстояния.

Сила инерции - фиктивная сила, вводимая в неинерциальных системах отсчёта для того, чтобы в них выполнялся второй закон Ньютона. В частности, в системе отсчёта , связанной с равноускоренно движущимся телом сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила и сила Кориолиса .

Равнодействующая

При расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей. Это геометрическая сумма всех сил, действующих на тело. При этом действие каждой силы не зависит от действия других, то есть каждая сила сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение носит название принципа независимости действия сил (принцип суперпозиции).

См. также

Источники

  • Григорьев В. И., Мякишев Г. Я. - «Силы в природе»
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика - Издание 5-е, стереотипное. - М .: Физматлит , 2004. - 224 с. - («Теоретическая физика» , том I). - .

Примечания

  1. Glossary . Earth Observatory . NASA . - «Сила - любой внешний фактор, который вызывает изменение в движении свободного тела или возникновение внутренних напряжений в зафиксированном теле.» (англ.)
  2. Бронштейн И. Н. Семендяев К. А. Справочник по математике. М.: Издательство «Наука» Редакция справочной физико-математической литературы.1964.

Действие тел друг на друга описывают с помощью сил. Сила - это мера действия одного тела на другое.

Например, ударяя ногой по мячу, вы прикладываете к нему силу (рис. 14.1). При этом вы чувствуете, что и мяч «толкает» вашу ногу с некоторой силой.

Рис. 14.1. Во время удара по мячу футболист прикладывал к мячу силу. В результате скорость мяча изменилась

Чем характеризуются силы? Ударить по мячу можно сильнее или слабее - значит, сила характеризуется числовым значением. Кроме того, ударить можно в разных направлениях - значит, сила имеет еще и определенное направление.

Величины, которые характеризуются числовым значением и направлением, называют векторными. Таким образом, сила - векторная величина.

Числовое значение векторной величины называют модулем этой величины. Например, числовое значение силы называют модулем силы.

Силы обозначают на чертежах стрелками (направленными отрезками). Начало стрелки совпадает с точкой приложения силы, направление стрелки показывает направление силы, а длина стрелки пропорциональна модулю силы. Например, на рис. 14.2 изображена сила, действующая на мяч со стороны ноги.

Рис. 14.2. Обозначение силы на рисунке

Единица силы. В СИ в качестве единицы силы принимают силу, под действием которой покоящееся тело массой 1 кг приобретает за 1 с скорость 1 м/с.

В честь английского ученого Исаака Ньютона эту единицу силы назвали ньютон (Н).

Обратите внимание: наименования единиц физических величин, названных в честь ученых, пишут со строчной буквы, а обозначения таких единиц - с прописной.

Рис. 14.3. Яблоко давит на ладонь с силой, примерно равной 1 Н

Велика ли сила 1 Н? Чтобы почувствовать эту силу, положите на ладонь небольшое яблоко (массой около 100 г) (рис. 14.3). Любой из вас может приложить силу в десятки и даже сотни ньютонов. Когда вы стоите на полу, вы давите на него с силой в несколько сотен ньютонов.

Тела не изменяют скорости и направления своих движений, не начинают двигаться или останавливаться просто так, без причины. Для того, чтобы это происходило, тела должны подействовать друг на друга. Мерой действия одного тела на другое является сила . Можно условно сказать, что сила отвечает на вопрос «как одно тело подействовало на другое?».

Примеров взаимодействия тел множество. Удар человека ногой по мячу, падение яблока с яблони на траву, сжатие пружины в каком-нибудь механизме, столкновение движущихся предметов и многое другое. В любом случае в результате этих взаимодействий тела изменяют свои скорости и даже направления движений.

Сила характеризуется числовым значением и направлением . Можно сказать, что числовое значение силы показывает, насколько она была сильна. Направление показывает, в какую сторону была направлена сила.

Например, человек может ударить по мячу с разной силой. Если ударить слегка, то мяч откатится недалеко, а если сильно, то улетит в другой конец поля. Кроме того, человек может ударить по мячу с любого направления и под любым углом: слева перпендикулярно поверхности меча, справа по касательной к поверхности мяча и так далее, в любое место, даже сверху. В зависимости от того, где был произведен удар, и в какую сторону он был направлен, зависит направление, в котором покатится мяч.

Сила используется не только для придания движения, но и для его остановки. Если мяч медленно катится в сторону человека, он может остановить его ногой, приложив небольшое усилие. Если же мяч летит на большой скорости, то человек, ловя его, почувствует достаточно сильный удар, то есть человеку придется приложить большую силу мышц, чтобы остановить мяч.

Те физические величины, которые помимо числового значения, характеризуются еще и направлением, называются векторными. Сила является векторной величиной .

Важна точка приложения силы. На чертежах направление силы обозначают стрелкой, выходящей из точки приложения силы. Например, то место на мяче, куда наносится удар - это точка приложения силы. Угол нанесения удара определяет, куда полетит мяч, то есть определяет направление силы. Длиной стрелки стараются показать числовое значение силы. Чем сила больше, тем стрелка изображается длиннее.

Единицей измерения силы в системе СИ является ньютон, обозначается буквой Н. 1 ньютон (Н) равен силе, которая понадобится, чтобы за 1 секунду изменить на 1 м/с скорость тела массой 1 кг.

1 Н = (1 кг * 1 м/с) / 1 c = 1 кг * м/с 2

Сила в 1 Н по человеческим меркам достаточно маленькая. Человек взаимодействует со многими другими телами с силами в десятки или сотни ньютонов.

Сила – это способность человека преодолевать внешнее сопротивление или противостоять ему за счет мышечных усилий (напряжений). Силовые способности – это комплекс различных проявлений человека в определенной двигательной деятельности, в основе которых лежит понятие «сила». Силовые способности проявляются не сами по себе, а через какую-либо двигательную деятельность. При этом влияние на проявление силовых способностей оказывают разные факторы, вклад которых в каждом конкретном случае меняется в зависимости от конкретных двигательных действий и условий их осуществлении, вида силовых способностей, возрастных, половых и индивидуальных особенностей человека. Среди них выделяют: I) собственно мышечные; 2) центрально-нервные; 3) личностно-психические; 4) биомеханические; 5) биохимические; 6) физиологические факторы; 7) различные условия внешней среды, в которых осуществляется двигательная деятельность .

Различают собственно силовые способности и их соединение с другими физическими способностями (скоростно-силовые, силовая ловкость, силовая выносливость).

Собственно силовые способности проявляются при удержании в течение определенного времени предельных отягощений с максимальным напряжением мышц или при перемещении предметов большой массы. В последнем случае скорость практически не имеет значения, а прилагаемые усилия достигают максимальных величин .

Скоростно-силовые способности характеризуются непредельными напряжениями мышц, проявляемыми с необходимой, часто максимальной мощностью в упражнениях, выполняемых со значительной скоростью, но не достигающей, как правило, предельной величины.

Силовая выносливость – это способность противостоять утомлению, вызываемому относительно продолжительными мышечными напряжениями значительной величины. В зависимости от режима работы мышц выделяют статическую и динамическую силовую выносливость. Динамическая силовая выносливость характерна для циклической и ациклической деятельности, а статическая силовая выносливость типична для деятельности, связанной с удержанием рабочего напряжения в определенной позе .

Силовая ловкость проявляется там, где есть сменный характер режима работы мышц, меняющиеся и непредвиденные ситуации деятельности (регби, борьба, хоккей с мячом и др.). В физическом воспитании различают абсолютную н относительную силу. Абсолютная сила – это максимальная сила, проявляемая человеком в каком-либо движении, независимо от массы его тела. Относительная сила – это сила, проявляемая человеком в пересчете на 1 кг собственного веса. Она выражается отношением максимальной силы к массе тела человека. В движениях, где есть небольшое внешнее сопротивление, абсолютная сила не имеет значения, если сопротивление значительно – она приобретает существенную роль и связана с максимумом взрывного усилия .

Задачи развития силовых способностей. Первая задача – общее гармоническое развитие всех мышечных групп опорно-двигательного аппарата человека. Вторая задача – разностороннее развитие силовых способностей в единстве с освоением жизненно важных двигательных действий (умений и навыков). Третья задача – создание условий и возможностей (базы) для дальнейшего совершенствования силовых способностей в рамках занятий конкретным видом спорта .